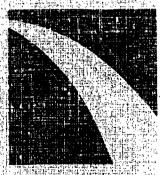


UPPER DOLORES RIVER AND SILVER CREEK BASIN WATER QUALITY AND DISCHARGE MONITORING SUMMARY Rico, Colorado


July 2002 Sampling Event

Prepared by:

Short Elliott Hendrickson Inc. 2637 Midpoint Drive, Suite F Fort Collins, Colorado 80525

Prepared for:

Atlantic Richfield Company 307 E. Park Street, Suite 400 Anaconda, Montana 59711

December 23, 2002

SHORT ELLIOTT HENDRICKSON INC Multidisciplined. Single Source.

TABLE OF CONTENTS

1.0 Introd	luction1
2.0 Metho	ods and Procedures2
2.1	Sampling Objectives
2.2	Water Quality and Flow Measurement Sampling Locations
2.3	Sampling and Analysis Parameters and Methods2
2.4	Water Quality Analytical Procedures4
2.5	Discharge Measurement Procedures
3.0 Resul	ts and Discussion7
3.1	Water Quality Results and Discussion7
3.	1.1 pH7
3.	1.2 Results and Discussion
3.2	Discharge Measurement Results and Discussion
TABLES	
Table 1	Sampling Location Summary
Table 2	Analytical Procedures Summary5
Table 3	Silver Creek Basin Analysis Results
Table 4	Upper Dolores River Analysis Results
Table 5	St. Louis Tunnel Settling Pond System Analysis Results
Table 6	Discharge Measurement Results
FIGURES	(follow page 14)
Figure 1	Upper Silver Creek Basin Site Location Map
Figure 2	Location of SVS-8, SVS-20, and SVS-26
Figure 3	St. Louis Settling Pond System
Figure 4	Dolores River Corridor – Sampling Station Location Map
PHOTOS	
Photo 1	Blaine Adit
Photo 2	Silver Creek just above the Argentine tailings seep (SVS-22)
Photo 3	Argentine Tailings seep- east fork of seep looking east
Photo 4	Argentine Tailings seep - north face
1 11000	
Photo 5	Unnamed adit downstream from the overhead tramway along Silver Creek
	Unnamed adit downstream from the overhead tramway along Silver Creek Unnamed adit discharge to Silver Creek downstream from the overhead tramway along Silver Creek
Photo 5 Photo 6	Unnamed adit discharge to Silver Creek downstream from the overhead tramway
Photo 5	Unnamed adit discharge to Silver Creek downstream from the overhead tramway along Silver Creek

TABLE OF CONTENTS (cont.)

	Photo 10	Rico Boy adit
	Photo 11	Santa Cruz adit
	Photo 12	DR-27: Rico Boy/Santa Cruz combined flow
	Photo 13	DR-9-SW Rico Boy/Santa Cruz wetland outlet
,	Photo 14	DR-1-SW Dolores R. side channel/Columbia Tailings Seep
	Photo 15	Columbia Tailings seep side channel
"	Photo 16	Silver Swan
l-		company

APPENDICES

Appendix A Field Records

Appendix B Analytical Report Package

UPPER DOLORES RIVER AND SILVER CREEK BASIN WATER QUALITY AND DISCHARGE MONITORING SUMMARY RICO, COLORADO

1.0 Introduction

This report includes water quality sampling results and discharge measurement results from the Silver Creek and upper Dolores River basins near the Town of Rico, Colorado. Water Quality samples were collected July 14-19, 2002 from the St. Louis tunnel discharge, the St. Louis settling pond system discharge (002), Argentine Tailings seep, an unnamed discharge along Silver Creek, Silver Swan adit discharge, combined Rico Boy and Santa Cruz adit discharges, Santa Cruz wetlands discharge, Columbia Tailings seep, Silver Creek, and the Dolores River. Water flow measurements were performed at each sampling site in conjunction with the water quality sampling. Table 1 lists the sampling station locations and site descriptions. Sampling sites in the Silver Creek basin are illustrated on Figures 1 and 2. Sampling sites in the Dolores River basins are illustrated on Figures 3 and 4. Photos 1-16 are of select sampling locations and site conditions.

TABLE 1
Sampling Location Summary

SITE ID	SITE DESCRIPTION
SVS-8	Silver Creek below Argentine tailings
SVS-12	Argentine Tailings seep at source
SVS-20	Silver Creek just above confluence with Dolores River
SVS-22	Silver Creek just above the Argentine Tailings seep
SVS-26	Unnamed adit downstream from the overhead tramway
DR-1-SW	Dolores River side channel/Columbia Tailings seep
DR-2-SW	Dolores River above Columbia Tailings
DR-4-SW	Dolores River below Silver Swan
DR-7-SW	Silver Swan adit
DR-9-SW	Rico Boy/Santa Cruz wetland outlet
DR-1	Dolores River above St. Louis settling pond system
DR-2	Dolores River immediately above St. Louis settling pond system outfall
DR-3	St. Louis tunnel discharge at adit
DR-6	St. Louis settling pond system outfall to the Dolores River (Outfall 002)
DR-7	Dolores River below St. Louis settling pond system outfall
DR-20	Dolores River just west of Pond 14
DR-26	Dolores River between Columbia Tailings seep and Rico Boy/Santa Cruz wetlands
DR-27	Rico Boy/Santa Cruz combined flow

2.0 Methods and Procedures

2.1 Sampling Objectives

Data from the water samples were used to characterize the water quality of the seeps, adit drainages and receiving streams. An objective of this sampling event was to collect and analyze samples from a low-flow event.

2.2 Water Quality and Flow Measurement Sampling Locations

Samples were collected from the St. Louis tunnel discharge, the St. Louis settling pond system discharge, Argentine Tailings seep, Silver Swan adit discharge, combined Rico Boy and Santa Cruz adit discharges, Columbia Tailings seep, the minor discharge downstream of the overhead tramway, Silver Creek, and the Dolores River as shown in Table 1. Samples were collected starting with the most downstream site and progressing upstream.

The Dolores River was sampled below all adit outfalls, just downstream of the Silver Swan adit. It was also sampled between Columbia Tailings and the wetlands adjacent to the Santa Cruz/Rico Boy outlet, and above the Columbia Tailings. The river sampling, when combined with the sampling of the Silver Swan adit, the Rico Boy/Santa Cruz combined flow, the Columbia Tailings seep, and Silver Creek above the confluence, provides a basis for assessing the affect of those discharges on the water quality of the Dolores River.

The Santa Cruz wetlands west outlet (DR-10-SW), which is the discharge from the small pond receiving the combined Rico Boy/Santa Cruz flows, was dry. The pond was several feet below the level of the overflow spillway and the channel from the pond to the Dolores River was dry. The Santa Cruz wetland east outlet (DR-9-SW) was sampled instead of DR-10-SW.

The affect of the St. Louis ponds system on the Dolores River was monitored by taking four samples from the Dolores River as identified in Table 1. In addition, samples were collected from the tunnel discharge and discharge 002.

To provide a basis for assessing water quality impacts to Silver Creek, the Creek was sampled above and below the Argentine Tailings seep. Also, the Argentine Tailings seep was sampled at its source, as was the minor discharge downstream of the overhead tramway.

Flow measurements were taken at all locations where water quality samples were collected. The exception to this is that no flow measurement was taken in the Dolores River along Pond 14 (DR-20).

2.3 Sampling and Analysis Parameters and Methods

Water samples were analyzed for pH, temperature, conductivity, alkalinity, hardness, total dissolved solids (TDS), total suspended solids (TSS), plus the trace metals arsenic, cadmium, chromium, copper, cyanide, iron, lead, manganese, mercury, nickel, selenium, silver, and zinc.

The following parameters/analysis were completed at the various sites:

- Arsenic total recoverable only at point sources
- Cadmium, Copper, Manganese, and Zinc dissolved at all sampling stations, plus total recoverable at the St Louis tunnel and potentially dissolved at the pond system discharge
- Chromium Total recoverable at all sampling stations
- Iron total recoverable at all sampling stations, and dissolved at the St Louis tunnel and pond system discharge
- Lead, Nickel, Selenium, and Silver dissolved at all sampling stations plus potentially dissolved at the St Louis tunnel and pond system discharge
- Cyanide -Low-Level WAD at all sampling stations
- Mercury Total at: Argentine Seep, Santa Cruz/Rico Boy, Silver Swan, St Louis tunnel, Dolores above St Louis Ponds, Dolores below St Louis Ponds (above Silver Creek), Silver Creek above confluence

Sampling was conducted in accordance with the sampling program used for the Rico site remediation. Lab-certified plastic bottles were used to collect sample water for hardness, TDS, and TSS analyses. Sample water for dissolved metals analysis was first collected in a clean plastic bottle, and within ten minutes, filtered through a 0.45µm filter into a sample bottle containing nitric acid preservative. Sample water for total recoverable metals analysis was collected without filtration in a sample bottle containing nitric acid preservative. Sample water for potentially dissolved metals analysis was collected without filtration in a sample bottle containing nitric acid preservative. Sample water for low-level mercury analysis was collected without filtration using the "clean hands/dirty hands" method (EPA Method 1631) into double wrapped, laboratory prepared glass bottles. All mercury samples were collected on the same day and shipped overnight to the laboratory. For quality control purposes, one duplicate sample and one field blank were included in addition to the 18 water quality samples submitted to the laboratory for analysis.

Field parameters were measured at the time of sample collection. Field measurement data for pH, temperature, conductivity, and alkalinity were recorded in a logbook. The pH meter was calibrated each morning using standard solutions and in accordance with manufactures instructions. Weather parameters including temperature and precipitation were recorded in the logbook. Copies of all field records are provided in Appendix A.

All sample bottles were labeled to identify site name/number, date and time of collection, and type of analysis. In addition, sample analysis/chain of custody forms were completed and processed at the time of sample collection. Original chain of custody forms were signed, dated, and placed in the sample shipment container prior to sealing the container for shipment. Copies of all chain of custody forms are provided in Appendix A.

2.4 Water Quality Analytical Procedures

All water samples were placed in a cooled container and sent to ACZ Laboratories, Inc. in Steamboat Springs, Colorado. Sample analyses were performed according to methods specified in 40 CFR, Part 136 or other methods approved by EPA. Laboratory methods and reporting limits for all parameters are presented in Table 2.

Laboratory results were supported by sufficient backup data and quality assurance results to enable reviewers to conclusively determine the quality of the data. The full analytical report package (Appendix B) includes reference to the analytical methods used, detection limits, and quality control data.

TABLE 2 Analytical Procedures Summary

Parameter	Method Detection Limit (MDL) ¹	Practical Quantitation Limit (PQL) ²	Method
Field Parameters			
pH (s.u.)			EPA 150.1
Temperature (°C)			Standard Method 2550
Conductivity (µmhos/cm)			EPA 120.1
Alkalinity (mg/L as CaCO ₃)	l mg/L	5 mg/L	EPA 310.1
General Parameters			
Hardness (as CaCO ₃)	l mg/L	7 mg/L	SM 2340 B
Total Dissolved Solids (as TDS)	10 mg/L	20 mg/L	M160.2 Gravimetric
Total Suspended Solids (as TSS)	5 mg/L	20 mg/L	M160.2 Gravimetric
Trace Metals			
Arsenic	0.5 μg/L	3 μg/L	M200.8 ICP-MS
Cadmium (as Cd)	3 μg/L	20 μg/L	M 200.7 ICP
Chromium	0.1 μg/L	0.5 μg/L	M200.8 ICP-MS
Copper (as Cu)	1 μg/L	5 μg/L	M200.8 ICP-MS
Cyanide	5 μg/L	10 μg/L	SM4500-CN I-Colorimetric w/distillation
Iron (as Fe)	10 μg/L	50 μg/L	M200.7 ICP
Lead (as Pb)	0.2 μg/L	l μg/L	M200.8 ICP-MS
Manganese (as Mn)	5 μg/L	30 μg/L	M200.7 ICP
Mercury	0.0002 μg/L	0.0005 μg/L	M1631 Atomic Fluorescence
Nickel	10 μg/L	50 μg/L	M200.7 ICP
Selenium	3 μg/L	20 μg/L	M200.8 ICP-MS
Silver (as Ag)	0.1 μg/L	0.5 μg/L	M200.8 ICP-MS
Zinc (as Zn)	10 μg/L	50 μg/L	M200.7 ICP

¹⁻MDL-Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations

^{2 -} PQL - Practical Quantitation Limit, typically 5 times the MDL

2.5 Discharge Measurement Procedures

Discharge measurements were conducted in accordance with the measurement procedures used for the Rico site remediation as well as USGS standard discharge measurement procedures. Flows were measured by one of four methods (1) six-tenths-depth method using a Marsh-McBirney Model 2000 portable flow meter, (2) Parshall flume, (3) volumetric procedure using a 5-gallon bucket, or (4) floating stick method.

The six-tenths-depth method (for depths between 0.3 feet and 2.5 feet) was selected for the flow meter measurements. This method uses the velocity at six-tenths of the depth as the mean velocity in the vertical direction. This method is generally reliable between depths from 0.3 feet to 2.5 feet. The first step in the measurement procedure was selecting a stream section with the desired characteristics of: parallel flows, smooth streambed with minimal obstructions, a straight channel, and a flat streambed. The best possible section was selected using these criteria. After selecting the stream section, a measuring tape was stretched across the stream section, perpendicular to the flow, and anchored at both ends. The width of the section was determined and divided into several (10 to 20) vertical sections. Flow measurements of velocity (by the six-tenths-depth method) and water depth were measured at each vertical section using the Marsh-McBirney flow meter and wading rod assembly. The flow meter was set to the 10 second fixed period average mode. Three velocity readings were recorded at each vertical section. Flows were calculated for each stream section using the water depth, horizontal distance, and averaged velocity data. The flow meter measurements were recorded in a logbook (Appendix A) and the discharges calculated on field data sheets (Appendix A).

The Argentine Seep, St. Louis tunnel flow, and St. Louis Pond discharge 002 each have a Parshall flume installed. Water depth measurements were taken at the appropriate location in the flume. The flow rate was then determined from a flume rating table.

The volumetric procedure was used at the combined Rico Boy/Santa Cruz flow, and the unnamed seep downstream of the overhead tramway. Volumetric field measurements consist of leaving a 5-gallon bucket under each discharge for a known length of time and measuring the water depth in the bucket at the end of the time. The volumetric trials were averaged to determine the flow rate (in gallons per minute) at each station. The volumetric trials were recorded in a logbook.

The floating stick method was used at the Silver Swan adit, and the Santa Cruz wetlands outfall. The floating stick method is used where flow levels are too low and the channel too flat for any of the previous methods. This method consists of finding a uniform channel section, and measuring the length, width and depth of the section. A small twig is then dropped on the water and the time required for the twig to travel the length of the section is recorded. Several trials were performed and an average velocity for the surface of the water was determined. From this average velocity and the cross-sectional area a flow rate was calculated. This method likely allows the greatest potential for error in flow estimation.

3.	O	Results	and l	Discu	ccion
J.	v	Vezaire	auu i	Discu	221011

3.1 Water Quality Results and Discussion

3.1.1 pH

pH was measured at all sites during the July and October sampling events. The same procedures and equipment were used for both sampling events. A QA review completed after the October event identified readings that were inconsistent between the two events and, upon historical review, with past readings. Further investigation led to the conclusion that the pH meter had not been functioning properly during either sampling event. Testing performed on the unit as directed by the equipment manufacturer confirmed that the sampling probe was not working properly. Therefore all pH data has been deemed suspect and is not presented in this report.

3.1.2 Results and Discussion

Silver Creek Basin. Analyses results from samples collected in the Silver Creek Basin on July 18-19, 2002, are provided in Table 3.

The leaking cofferdam in the Blaine Tunnel portal was sealed on July 27, 2001. No flow was observed exiting the portal during the July field visit.

A collapsed adit discharge (SVS-26) was found on the south side of Silver Creek, approximately 0.8 miles downstream from the Blaine adit as part of an effort to identify any seeps/discharges in the vicinity downstream of the Blaine adit. This location is slightly downstream from where the overhead tramway cables cross the Argentine Tailings access road. This seep was found by walking downstream along Silver Creek from the Blaine Adit until this discharge was located. No other seep or discharge was found on the south side of the creek and no seep or discharge, other than the Argentine Tailings seep, was found on the north side of the creek.

TABLE 3
Silver Creek Basin Analysis Results (July 18-19, 2002)

		SVS-22	SVS-12	SVS-8	SVS-26	SVS-20
Parameter	Units	Silver Creek above Argentine Tailings seep	Argentine Tailings seep	Silver Creek below Argentine Tailings	Discharge Downstream of overhead tramway	Silver Creek just above Dolores River
	Date Sampled	7/18/2002	7/18/2002	7/18/2002	7/19/2002	7/18/2002
Time of Flow n	neasurement	12:30 pm	10:30 am	10:05 am	≈11:45 am	7:55 am
Time Water Qu Collected	ality Sample	12:50 pm	11:00 am	9:25 am	12:20 pm	8:30 am
Field Parame	eters		1			
Flow	gpm	158	24	169	2.1	78
Temperature	°C	9.2	7.4	9.2	6.9	10.1
Conductivity	μmhos/cm	191.3	733	326.8	441.6	377.4
Alkalinity	mg/L as CaCO ₃	90	155	na	55	153
General Paran	neters					
Hardness	mg/L as CaCO ₃	144	751	329	403	352
Total Dissolved Solids	mg/L as TDS	180	1010	370	630	420
Total Suspended Solids	mg/L as TSS	U	8	6	6	U

na - not analyzed

U - Analyte was analyzed for but not detected at the minimum detection limit (MDL)

TABLE 3 (cont.) Silver Creek Basin Analysis Results (July 18-19, 2002)

Parameter	Units	SVS-22 Silver Creek above Argentine Tailings seep	SVS-12 Argentine Tailings seep	SVS-8 Silver Creek below Argentine Tailings	SVS-26 Discharge Downstream of overhead tramway	SVS-20 Silver Creek just above Dolores River
Dissolved Tra	ace Metals					
Cadmium	μg/L as Cd	4	4	3	16	4
Copper	μg/L as Cu	2	2	2	51	2
Cyanide	mg/L as CN	U	U	U	U	U
Lead	μg/L as Pb	0.5	1.7	U	40.7	0.5
Manganese	μg/L as Mn	Ŭ	7200	648	10800	12
Nickel	μg/L as Ni	U	20	U	U	U
Selenium	μg/L as Se	Ŭ	Ŭ	U	U	U
Silver	μg/L as Ag	U	ប	U	U	U
Zinc	μg/L as Zn	420	6110	940	8050	470
Total Recover	able Trace Metals					
Arsenic	μg/L as As	na	0.8	na	U	na
Chromium	μg/L as Cr	U	U	0.1	U	U
Iron	μg/L as Fe	U	5780	90	14800	10
Total						
Mercury	μg/L as Hg	na	U	na	na	U

H - Analysis exceeded method hold time

Dolores River Basin. Samples from the Upper Dolores River Basin were collected on July 14-19, 2002. Results from Dolores River samples are presented in Table 4 on the following page.

During QA review initial test results for hardness, manganese, and zinc for the Dolores River below Silver Swan (DR-4-SW) appeared inconsistent with other results for the Dolores River. Accordingly, the sample was retested for these parameters. The laboratory identified a dilution factor error in the initial hardness analysis and that result was discarded. The retest result is presented in Table 4. Both sets of data for manganese and zinc are presented in Table 4.

na - not analyzed

U - Analyte was analyzed for but not detected at the minimum detection limit (MDL)

TABLE 4 .Upper Dolores River Analysis Results (July 18-19, 2002)

					 	1	 			<u> </u>		
		DR-1	DR-20	DR-2	DR-7	DR-2-SW	DR-1-SW	DR-26	DR-9-SW	DR-27	DR-7-SW	DR-4-SW
Parameter	Units	Dolores River above St. Louis Ponds	Dolores River just west of Pond 14	Dolores River above Outfall	Dolores River below St. Louis Ponds	Dolores River above Columbia Tailings	Dolores River side channel/ Columbia Tailings seep	Dolores River between Columbia Tailings seep and Rico Boy/Santa Cruz wetlands	Rico Boy/Santa Cruz wetland outlet	Rico Boy/Santa Cruz combined flow	Silver Swan adit	Dolores River below Silver Swan
	Date Sampled	7/19/2002	7/19/2002	7/17/2002	7/16/2002	7/15/2002	7/17/2002	7/14/2002	7/17/2002	7/16/2002	7/16/2002	7/14/2002
Time of Flow me	easurement	9:45 am	па	6:20 pm	12;30 pm	1:40 pm	12:40 pm	6:40 pm	≈9:00 am	10:10 am	8:00 am	3:10 pm
Time Water Qua Collected	lity Sample	10:10 am	8:40 am	5:50 pm	12:10 pm	1:40 pm	11:45 am	6:40 pm	9:00 am	10:45 am	8:40 am	3:25 pm
Field Parameter	rs											
Flow	gpm	4822	па	6478	6346	6689	21.3 A	4649	20	32	16	6210
Temperature	°C	11.5	10.1	16.1	14.7	17.4	16.9	16.4	14.6	19.9	13.3	18.5
Conductivity	μmhos/cm	185.8	. 196.1	288.9	345.1	359.7	383.2	355.8	551	1169	995	380.6
Alkalinity	mg/L as	99	105	98	120	82	128	83	326	657	467	78
General Parame	eters											
Hardness	mg/L as CaCO ₃	134	148	221	242	249	259	250	425	942	1040	290
Total Dissolved Solids	mg/L as TDS	190	210	240	320	330	340	330	540	1160	1240	340
Total Suspended Solids	mg/L as TSS	U	U	10	6	υ	10	U	12	10	30	8
Dissolved Trace	Metals											
Cadmium	μg/L as Cd	3	U	U	U	U	U	U	U	U	U	U
Соррег	μg/L as Cu	U	U	2	1	2	3	1	2	10	2	1
Cyanide	mg/L as Cn	U	U	U	U	Ŭ	U	U	U	U	U	U
Lead	μg/L as Pb	U	U	0.3	U	0.2	U	U	U	U	1.3	U
Manganese	μg/L as Mn	13	79	307	316	210	188	229	9060	86	2690	21/U C
Nickel	μg/L as Ni	U	U	·U	U	U	U	U	U	U	U	U
Selenium	μg/L as Se	U	U	U	U	U	U	U	U	U	U	U
Silver	μg/L as Ag	Ŭ	U	U	U	U	U	U	U	U	U	0.2
Zinc	μg/L as Zn	20	20	20	20	50	580	80	40	920	880	10/30 C
Total Recoveral						,				,	γ	
Arsenic	μg/L as As	na	na	na	na	na	U	na	na	U	5.1	na
Chromium	μg/L as Cr	U	0.1	0.1	1.7	1.3	U	1.4	U	U	1.5	1.4
Iron	μg/L as Fe	50	90	90	170	120	530	160	1690	10	14700	120
Total	T 22 22			r · · · · · · · · · · · · · · · · · · ·	т				· · · · · · · · · · · · · · · · · · ·	т		
Mercury	μg/L as Hg	U	na	na	U	na	na	па	na	U	U	na
A - Flow exiting :	side channel not	t the seen										

A – Flow exiting side channel, not the seep
B – calculated from Total Recoverable Iron minus Iron II

C - Samples were retested, both results shown. The initial test result is the first number, the retest is the second number

H - Analysis exceeded method hold time

na – not analyzed

U - Analyte was analyzed for but not detected at the minimum detection limit (MDL)

St. Louis Settling Pond System. Sample results from the St. Louis tunnel settling pond system are presented in Table 5. Samples were collected at the St. Louis tunnel discharge at the adit (DR-3, Photo 9), and Outfall 002 (DR-6).

All tested metals showed a significant reduction in concentration from the tunnel to the outfall.

TABLE 5
St. Louis Tunnel Settling Pond System Analysis Results (July 18-19, 2002)

		DR-3	DR-6
Parameter	Units	Tunnel Discharge	Outfall 002
	Date Sampled	7/16/2002	7/16/2002
Time of Flow m	easurement	2:05 pm	1:30 pm
Time Water Qua Collected	ality Sample	2:05 pm	1:30 pm
Field Paramete	ers		
Flow	gpm	420	91.6
Temperature	°C	20.1	16.7
Conductivity	μmhos/cm	985	1057
Alkalinity	Mg/L as CaCO ₃	94	166
General Paran	eters		
Hardness	mg/L as CaCO ₃	742	925
TDS	mg/L as TDS	1120	1350
TSS	mg/L as TSS	46	16
Dissolved Trac	e Metals		
Cadmium	μg/L as Cd	13	υ
Copper	μg/L as Cu	20	3
Cyanide	μg/L as Cn	U	U
Iron	μg/L as Fe	2630	30
Lead	μg/L as Pb	16.7	U
Manganese	μg/L as Mn	2050	505
Mercury	μg/L as Mg	U	na
Nickel	μg/L as Ni	U	U
Selenium	μg/L as Se	U	U
Silver	μg/L as Ag	U	U
Zinc	μg/L as Zn	3430	410

na – not analyzed

U - Analyte was analyzed for but not detected at the minimum detection limit (MDL)

TABLE 5 (cont.)
St. Louis Tunnel Settling Pond System Analysis Results (July 18-19, 2002)

				
		DR-3	DR-6	
Parameter	Units	Tunnel Discharge	Outfall 002	
Potentially Di	ssolved			
Cadmium	μg/L as Cd	na	15	
Copper	μg/L as Cu	na	2.8	
Lead	μg/L as Pb	16	0.7	
Manganese	μg/L as Mn	na	506	
Nickel	μg/L as Ni	U	80	
Selenium	μg/L as Se	U	U	
Silver	μg/L as Ag	0.10	U	
Zinc	μg/L as Zn	na	450	
Total Recovera	ble Trace Metals			
Arsenic	μg/L as As	1.7	U	
Cadmium	μg/L as Cd	18	na	
Chromium	μg/L as Cr	9.8	1.6	
Copper	μg/L as Cu	250	na	
Iron	μg/L as Fe	13900	390	
Manganese	μg/L as Mn	2160	na	
Zinc	μg/L as Zn	3280	па	

na - not analyzed

U - Analyte was analyzed for but not detected at the minimum detection limit (MDL)

3.2 Discharge Measurement Results and Discussion

Flow measurement results from the Silver Creek Basin, the Dolores River, and the St. Louis settling pond system for all sampling during July 2002 are provided in Table 6. The sites are listed in order of upstream to downstream and include the measurement method used for each. In addition to Table 6, sampling site locations in the Silver Creek and Dolores River basins are illustrated on Figures 1 through 4. Appendix A2 contains the field sampling and stream flow measurement forms.

The accuracy of flow measurements taken in the Dolores River is thought to be affected adversely by the presence of relatively large rocks and comparatively shallow flows. The apparent decrease in flow at DR-26 is likely not valid. Results may also have been affected by measuring on different days, and at different times of the day.

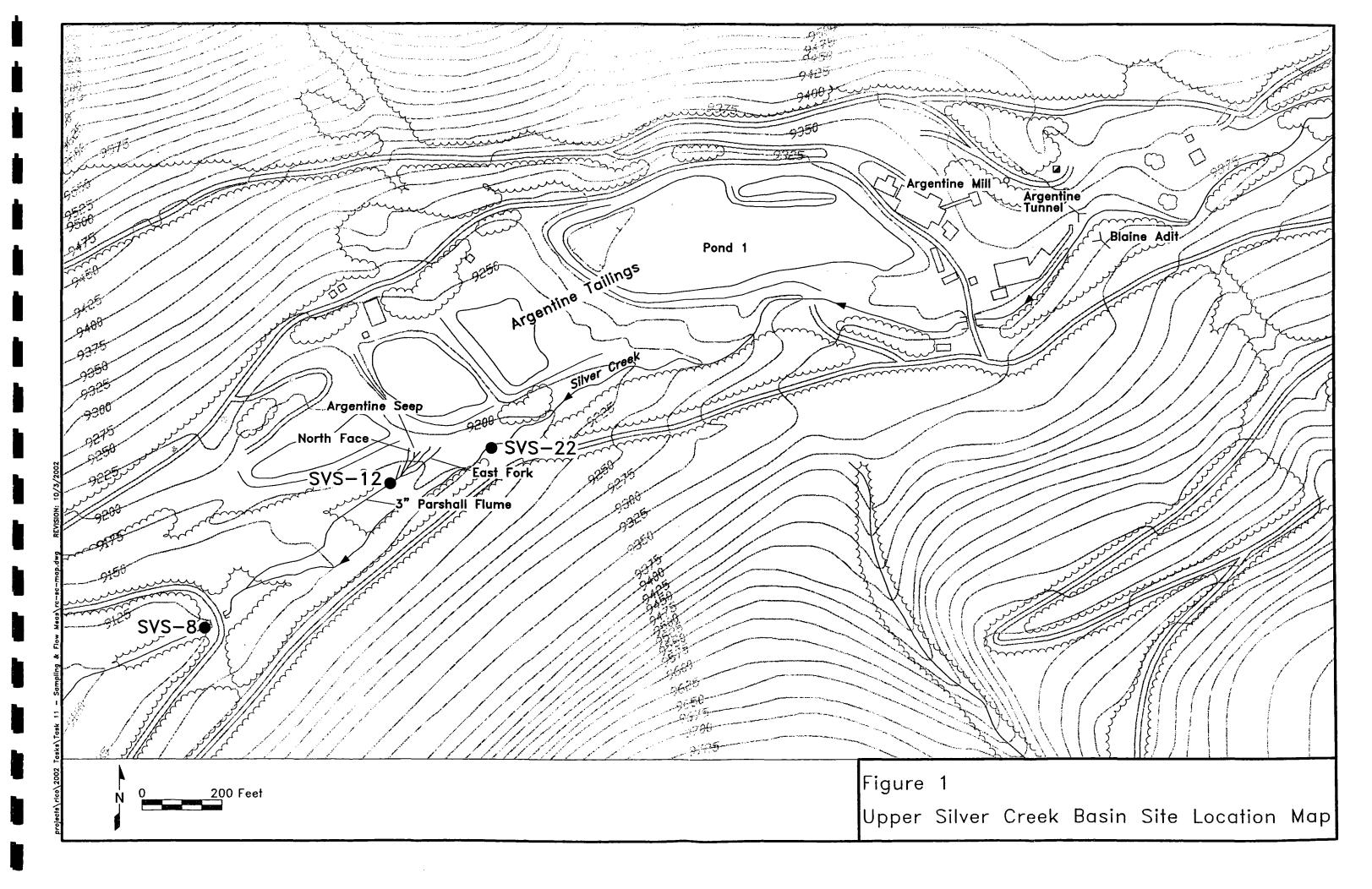
DR-1-SW is in a Dolores River side channel adjacent to the Columbia Tailings. There was flow from the Dolores River entering the upstream end of the side channel, no surface discharge from the Columbia Tailings to the side channel, and surface flow out of the side channel into the Dolores River main stem. Flow measurements were taken at the upstream and downstream ends of the side channel. Flow measurement calculations (shown in Appendix A2) indicate that flow at the upstream end of the side channel was 14.8 gpm, and flow at the downstream end of the side channel was 21.3 gpm. Assuming no additional losses or gains from groundwater or other Dolores River flow, the seep would have a potential flow of 6.5 gpm.

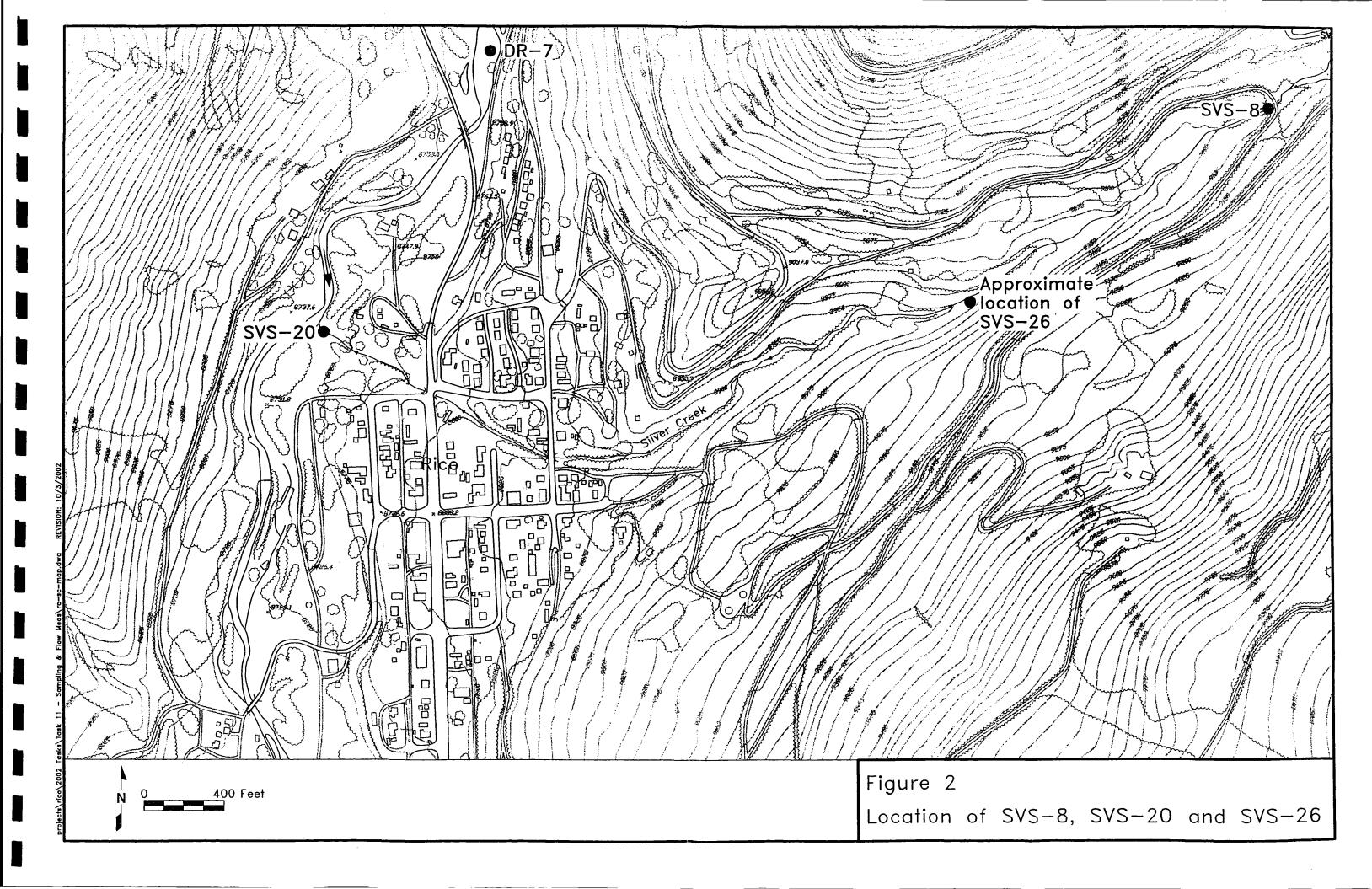
The length of Silver Creek from the Blaine adit to about 0.8 miles downstream was walked during the search for the seep/discharge along the south side of Silver Creek. It was observed that the creek was running at the adit and downstream for several hundred feet. Approximately three-quarters of the way along Pond 1 (Pond 1 being the uppermost pond) of the Argentine Tailings the creek ran dry. It remained dry for several hundred feet and resurfaced just upstream of the Argentine Tailings seep. Additionally, there are now two man-made pools in Silver Creek, just above the Argentine Tailings seep. One pool is shown in Photo 2. Rocks have been placed and piled across the creek to form a permeable wall. The rocks were not present during the previous sampling event, and are not iron stained as are the other rocks in the creek. The reason for the pools and who constructed them is not known.

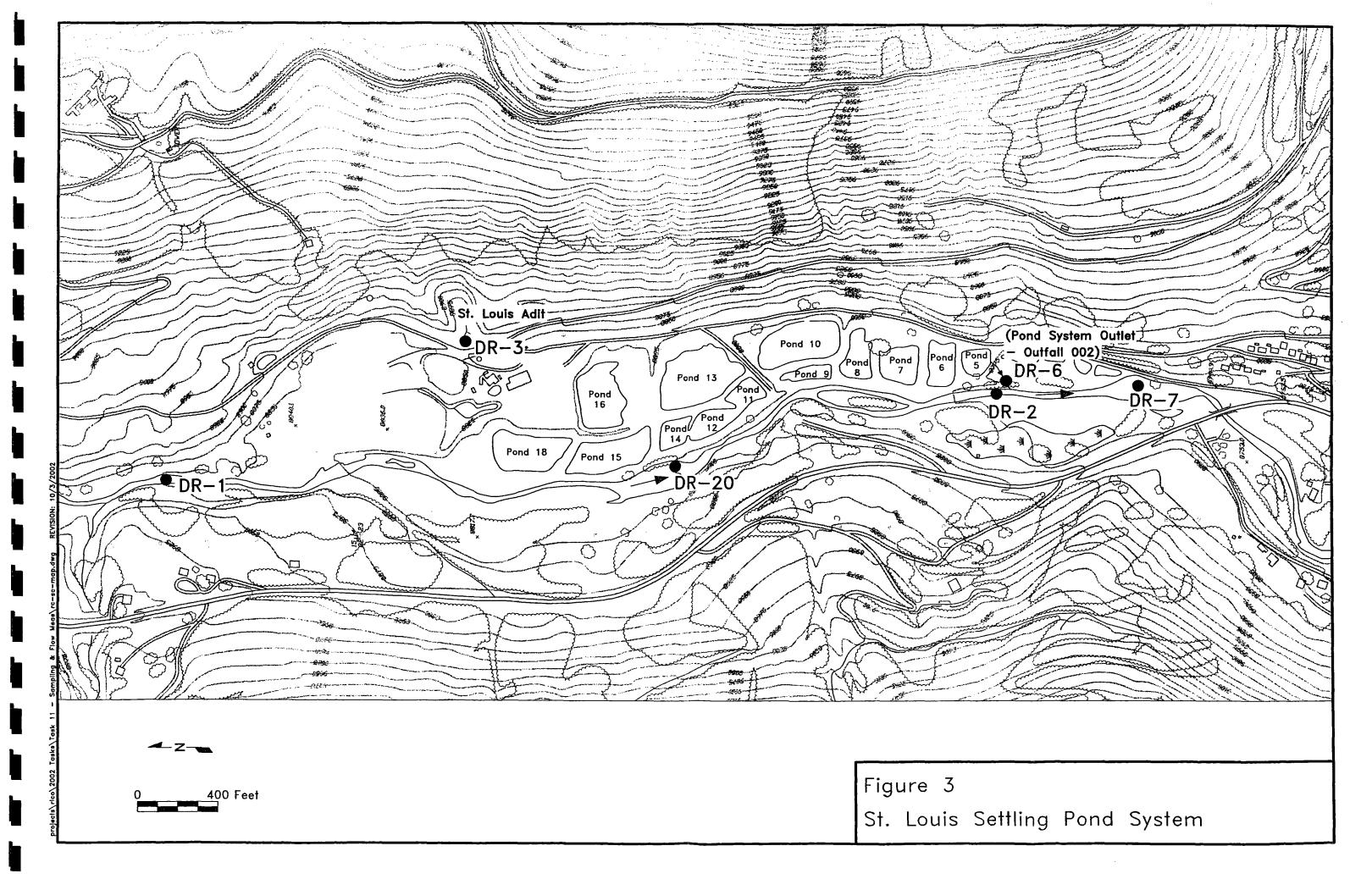
Flow was evident out of the collapsed Silver Swan adit. A lined ditch conveyed flow from the adit to a small pond on the site. While there was flow into the pond, the pond had a very low water level, well below the overflow weir (Photo 16).

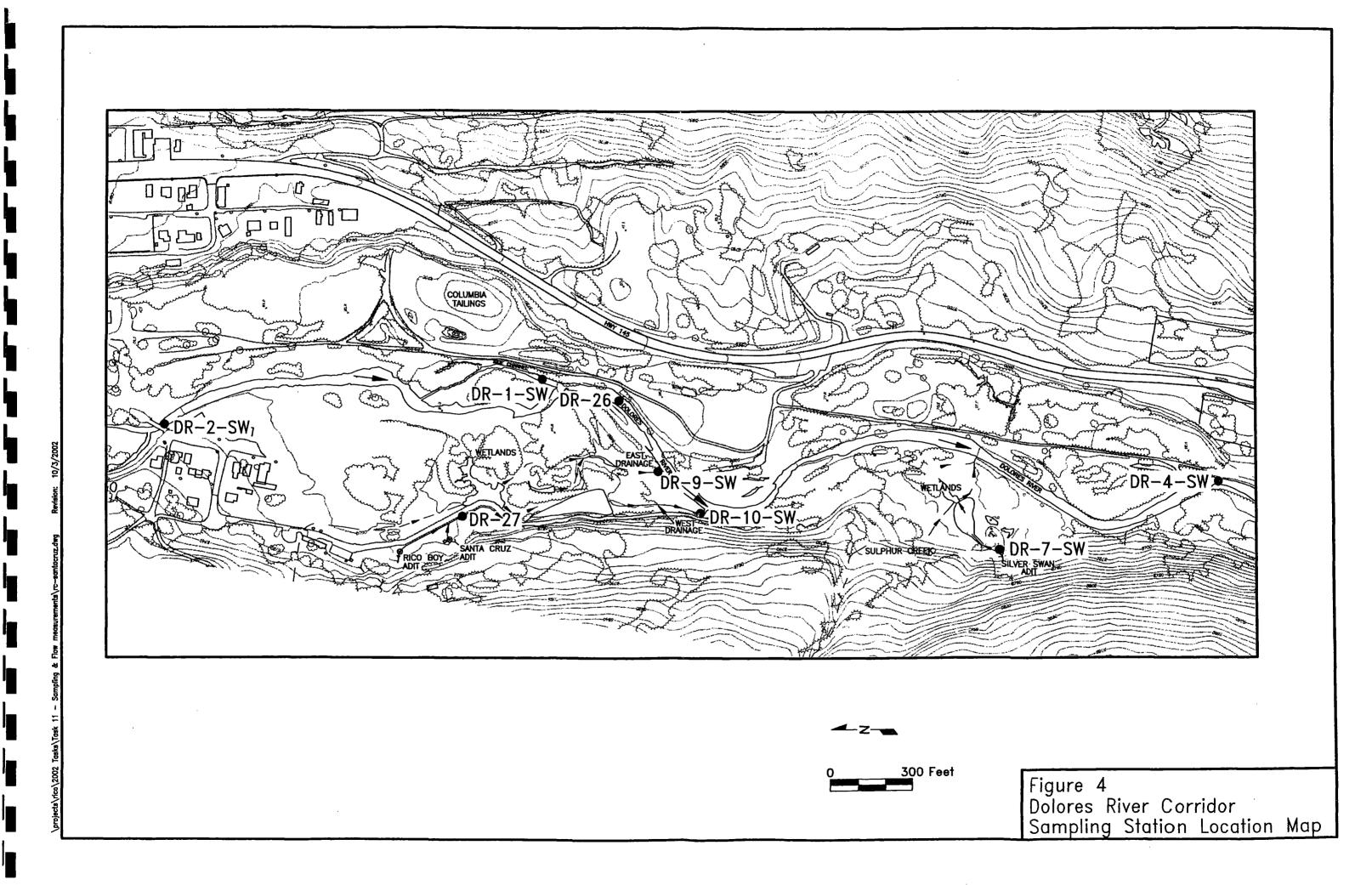
TABLE 6 Discharge Measurement Results (July 18-19, 2002)

Site ID	Site Description	Measurement Method	Flow July
Silver Cree	k Basin		(gpm)
SVS-22	Silver Creek just above the Argentine tailings seep	Flow meter	158
SVS-12	Argentine tailings seep at source	Flume	23.7
SVS-8	Silver Creek below Argentine tailings	Flow meter	169
SVS-26	Unnamed seep downstream from the overhead tramway	Volumetric	2.1
SVS-20	Silver Creek just above confluence with Dolores River	Flow meter	78.5
Dolores Riv	ver		(cfs)
DR-1	Dolores River above St. Louis settling pond system	Flow meter	10.7
DR-20	Dolores River just west of Pond 14	Not Measured	
DR-2	Dolores River immediately above St. Louis settling pond system outfall	Flow meter	14.4
DR-7	Dolores River below St. Louis settling pond system outfall	Flow meter	14.1
DR-2-SW	Dolores River above Columbia Tailings	Flow meter	14.9
DR-1-SW	Dolores River side channel/Columbia Tailings seep	Flow meter	0.048
DR-26	Dolores River between Columbia Tailings seep and Rico Boy/Santa Cruz wetlands	Flow meter	10.4
DR-9-SW	Rico Boy/Santa Cruz wetlands outlet	Floating Stick	0.044
DR-27	Rico Boy/Santa Cruz combined flow	Volumetric	0.071
DR-7-SW	Silver Swan adit	Floating Stick	0.036
DR-4-SW	Dolores River below Silver Swan	Flow meter	13.8
St. Louis S	ettling Pond System		(gpm)
DR-3	St. Louis tunnel discharge at adit	Flume	420
DR-6	St. Louis settling pond system outfall to the Dolores River (Outfall 002)	Flume	91.6


FIGURES


Figure 1 Upper Silver Creek Basin Site Location Map Figure 2 Location of SVS-8, SVS-20, and SVS-26


Figure 3 St. Louis Settling Pond System


Figure 4 Dolores River Corridor - Sampling Station

Location Map

PHOTOS

Photo 1	Blaine Adit
Photo 2	Silver Creek just above the Argentine tailings seep (SVS-22)
Photo 3	Argentine Tailings seep- east fork of seep looking east
Photo 4	Argentine Tailings seep - north face
Photo 5	Unnamed adit downstream from the overhead tramway along Silver Creek
Photo 6	Unnamed adit discharge to Silver Creek downstream from the overhead
	tramway along Silver Creek
Photo 7	Silver Creek just above the confluence with the Dolores River (SVS-20).
Photo 8	Silver Creek just above the confluence with the Dolores River (SVS-20).
Photo 9	St. Louis adit
Photo 10	Rico Boy adit
Photo 11	Santa Cruz adit
Photo 12	DR-27: Rico Boy/Santa Cruz combined flow
Photo 13	DR-9-SW Rico Boy/Santa Cruz wetland outlet
Photo 14	DR-1-SW Dolores R. side channel/Columbia Tailings Seep
Photo 15	Columbia Tailings seep side channel
Photo 16	Silver Swan

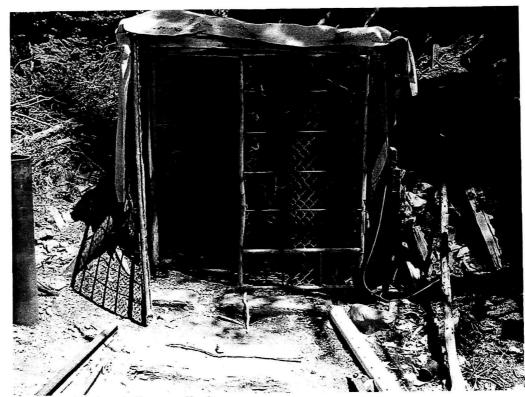
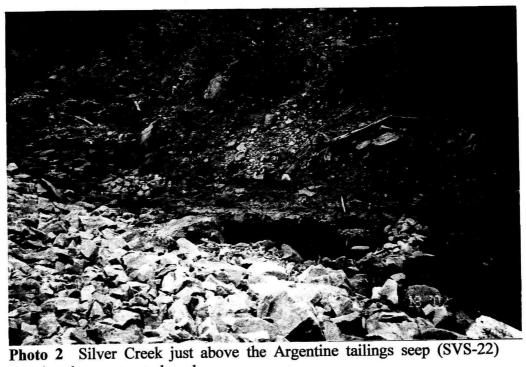



Photo 1 Blaine Adit - no discharge or seepage.

showing the constructed pools.

Photo 3 Argentine Tailings seep- east fork of seep, looking east.

Photo 4 Argentine Tailings seep - north face, looking north.

Photo 5 Unnamed adit downstream from the overhead tramway along Silver Creek. View of the adit.

Photo 6 Unnamed adit discharge to Silver Creek downstream from the overhead tramway along Silver Creek (SVS-26). Flow was measured to be 2.1 gpm.

Photo 7 Silver Creek just above the confluence with the Dolores River (SVS-20).

Photo 8 Silver Creek just above the confluence with the Dolores River (SVS-20).

Photo 9 St. Louis tunnel flow exiting portal and entering culvert under the road.

Photo 10 Rico Boy adit

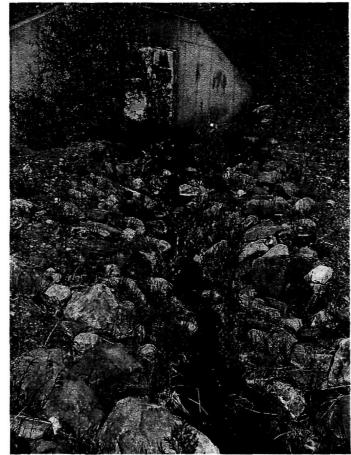


Photo 11 Santa Cruz adit and discharge ditch.

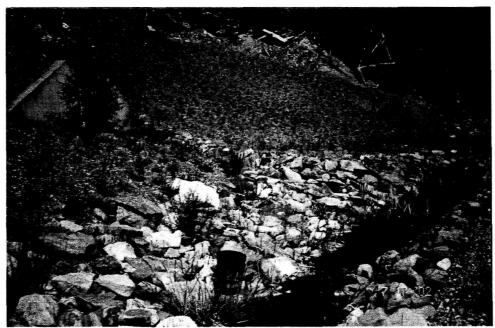


Photo 12 DR-27: Rico Boy/Santa Cruz combined flow. Sampling location next to pail looking upstream, Santa Cruz adit on left

Photo 13 DR-9-SW Rico Boy/Santa Cruz wetland outlet, east and west channels.

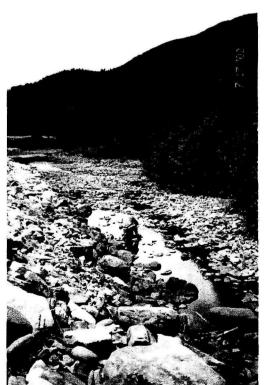


Photo 14 DR-1-SW Dolores R. side channel/Columbia Tailings Seep Water quality sampling site looking downstream (south).

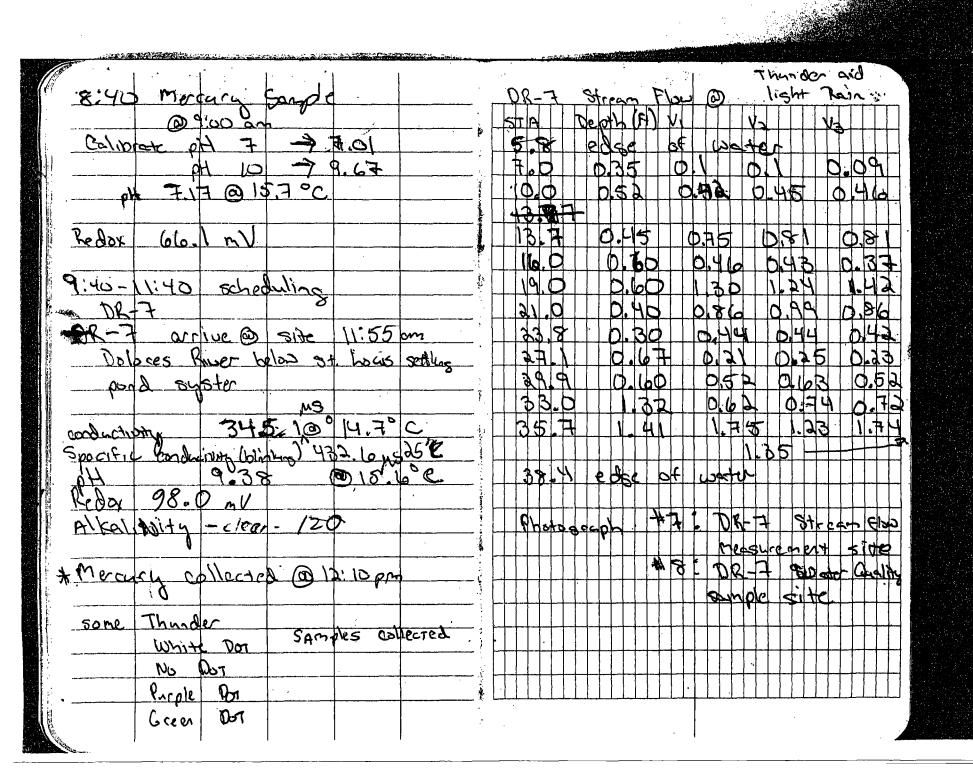
Photo 15 Columbia Tailings seep side channel, looking upstream.

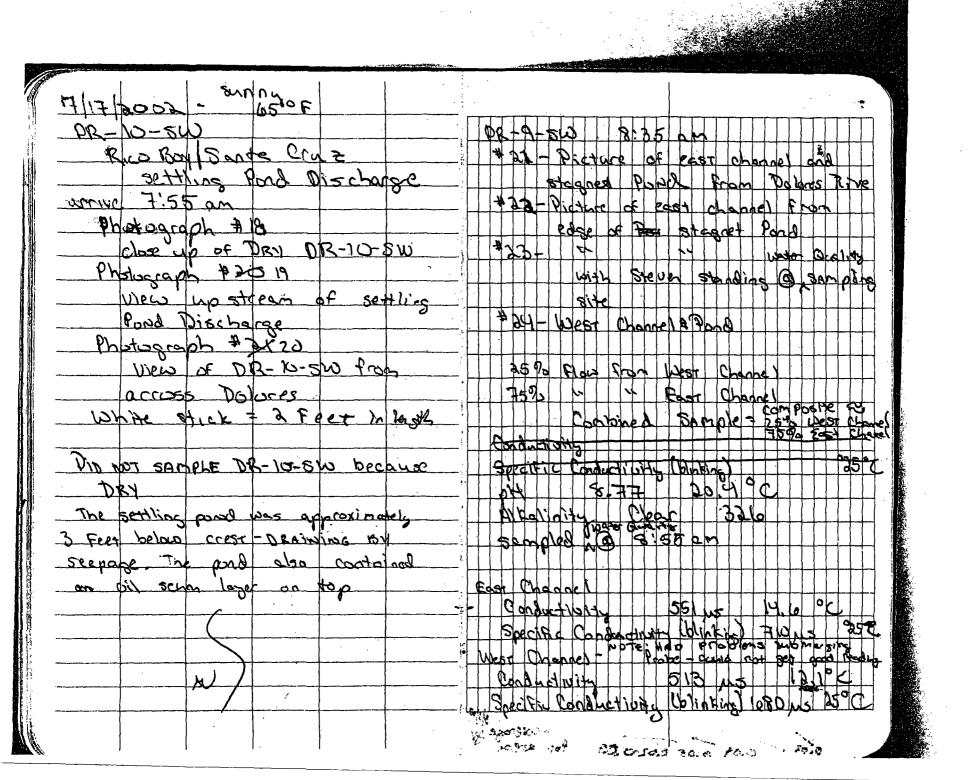
Photo 16 Silver Swan. Adit flow entering from ditch on left, low water levels in ponds shown.

APPENDIX A

Field Records

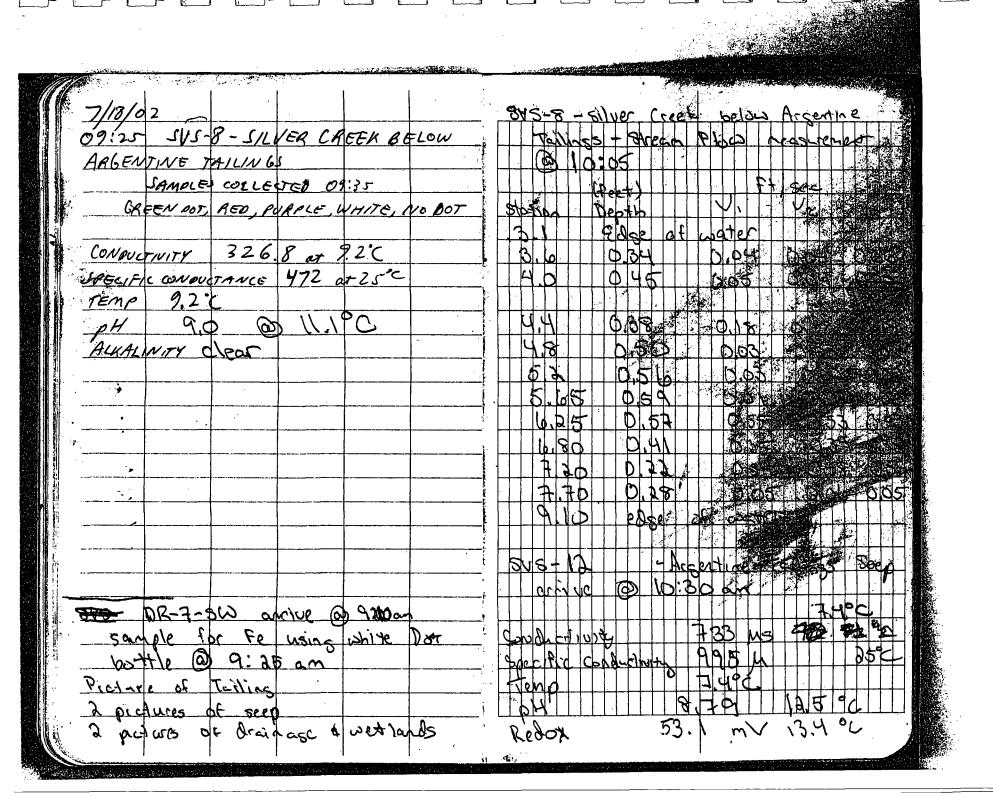
APPENDIX A1

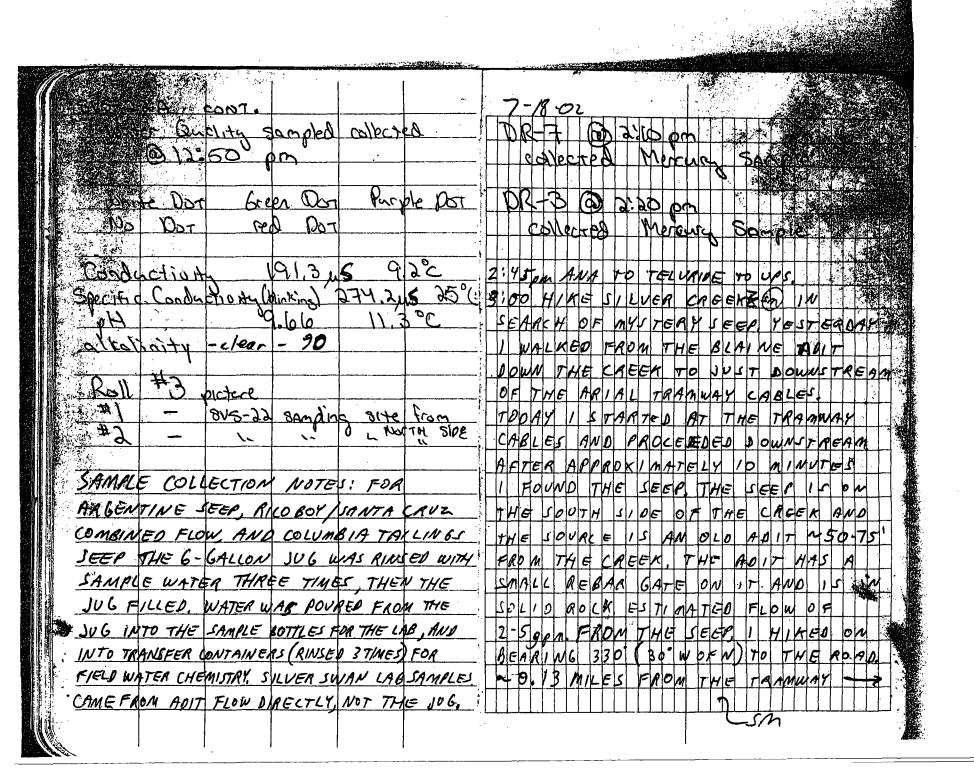

Field Notes


7-13-02 7-14-02 4:30 pm STEVEN MOAGENSTEAN C) MIXER ON LIME TLUARY DRUM ALAN SEWELL D) PH METER / SLURRY PUMP CONFROLLER E) AO SLURRY PUMP SPEED CONTROLLER 8:15 AM AMAINE AT ST. LOUIS ALAN F) PEBISTALTIC PUMP/SEURRY PUMP ADDED ~10" WATER TO DRUM -> 10%-11% SLURRY ESTIMATES ABOUT ONE 5-6AL PAIL OF OCASSIONAL PH READINGS TAKEN AT SLUDGE IN BAG, ANDED ABOUT 3 GAL WEIR WITH W.O. PH METER. WATER TO SLUARY DRUM SET UP ALL FOUI PMENT EVIDENCE OF SOME SOLID ESCAPING BAG BUT DOES NOT APPEA 7:300M - EQUIPMENT LOFT AUNILING. TO BE SIGNIFICAT MOST SEEMS TO ALAN AND I GO TO DINNEA. PATCHED COMING OUT OF THE SEAM. LEAK IN RECIRCULATION PUMP OUTLET HOSE, 8:40 AM SYSTEM STARTED FLOWERTE 8:45 ON SITE. DIVERTED ADIT INFLOW INTAKE CHANGED TO INCREASE FROM WIET TANK TO GROUND, TURNED OFF RECIRCULATION PUMP AND SHUT RECERCULATION FLOW, SOME DOWN MIXER & LIME FED. REMOVE SOLING SETTLEN OUT IN TAI DIVERSION PLATE RAIN PROF OVER NIGHT EQUIAMENT 9:50 - BRIEN - ACT 9:15 PM - LEAVE STITE 10:15 GAS CAN FILILUB AND CALL BILL 11:00 ON SITE SM 1

		A Company of the Comp					was a second			
A. T.	7-14-02		}			7+14-0	2			, et .
7	4:40pm 57	- 10015. 1	VO WAT	EN OUT	01=	6:40	OVERC.	457 2	126, De	DLOPES
<u>ii. 12</u>	BAG RELIE	F A FEU	HOLES	INB	UE	RIVER E	BETWEEN	COLUM	MB 14 566	PANO
70	HONDA PUM						ouz we	1 1 1 1 1 1	-+	
1. T. 8. 1.	FEED HOS						<u> </u>	 		
	WE OULT-7		1	•		Corpi	1471174	355.	8 ex 16.	9-4
R.	ADDED 10				NO	SPECI		CTANCE	425	
n L	10 DRUM IN					TEMA	1/6.4			+++++
<u></u>	ATTACHED	A ROCK	TO LIME	INTAKE	HOSE	ApA	7		9 3	1 1 1 1 1 1 1 1
<u>L</u>	5:30pm D	0_ 20 ×		10		7447	GPTH	VI	V2 V	,
	OVERCAST.		VLIEN D	TO ETPL	V 5/1).	43040	0	a	·7·	GOGE WATER
	CONDUCTIVI	74 933	at 20"	C -		45675	├ ╍ ┞ ╍┼╍┼╍┼┈┼		0.07 0.1	
	SPECIFIC CO.					9.5			0.07 0.	
<u> </u>	TEMP					11.0	0	0	10 1	9
-		,39				13.2	0.26	0.49	0.49	0.47
	Alkalinity					16.5	0.40	0,59	0.58	0.60
~ -	REAL	FENDED	+0 .4 QUA	OVER TI	ME	20.0	0.63	0.25		
_					· 	23.0	0.62	0.48		0.50
-	+15 TSS	,HARDNESS	, erro	VED ME	TALS	26.5	0.63	0.76		0.02
	TRec	—				33.5	0.52	0.14	·	
	5:30 TURNE	50 /				37 0	0 75	0.98	1.02	
	OFF HONOA					40 5	0.69	1.13	1,13	1,10
	PUMP (Sm)					844.0	0.49	0.69		0.71
			m			47.0	0.25	0,38	0.42	0.42
		,		_		49.0	EDGE	WATER	·	SM
	}	1	1	ſ		•		1		

7-15-02 10:00 AM - BREAK FOR BREAKFAST FLL OUT WO SAMPLE LABELS 10:55 AM - RICO/ST. LOUIS FOR EQUIPMENT BREAKBOUN 1:00 PM - GRUDE SETTLING TEST LIMEN SOLIAS SETTLES CLOR FROM BEAKER STARTING AT 11:30 AM "SETTLING TIME LESS THAN 105 HOURS 1:40 DR-2-5W, OVERCAST, ~70 F CONDUCTIVITY 359,7 as 17.4.4 SPECIFIC CONDUCTANCE 422.0 0 25°C p# 1.24@ 23.8°C TEMP 17.4°C ALKALINITY - deer - 82 SOME THUNDER


					•	٠.						·						i														•		1
7-15-02													1																					
		Ė		j-	Γ				Ì	_							Γ		7	-7					_	_	1	٠-				Ť	T	
	- -	0	R	_	2	-	5	6	V		=,	0	n	 •	-	-							_			1				-				-
	2	7	A		-			8	E	0		Н			V	1					V	2	-			1	U	3					7	-
.	6		0			-		-	_	0					4				7		ン				Į	2		C	000	G	Ċ	EA	,	ŕ
	6		5					0		2	1			_	0		74			_	9	.0	N	-		- 6	,	1	6		7		*	
	9		0				0		Ī.,	5	ļ'-			0	-	0			-	_	0		_	3		Ţ	-	0	Ţ.,		0			-
- 1	ĺ	1	•	0	<u> </u>	-	0	•	8	7	-			1	•	,	1		7	1	-	<u>'</u> 0	7			+	1			9		{	-+	-
	1	3	ļ	0		 	1	ļ-	1	8	,			<u> </u>		7	3		1	1	_	8	-			-	1			5				
	<i>,</i> 	<u> </u>		0	•	-	1		_	5				2	_	4	2			, 2	•	٠,	9					,		9			}	
. }	1	5		0			0			0	- '			1		7	2			/	_		B			- 1)		8	8				
	i	5		4	_		ī			3				1	•	1	0			1	~	0	9		_	7	,		_	Y			+	\dashv
	′		8	-1	4		-	1		0	8			0	-	9	6		1	7	•	_	0		-†			1		5			+	
		<u>.</u> 2	0	-	0			0		9	ï			0		9	7			1			6		7	+	ı	-1	Ö	¥			┧	
		2	2	,	0			0			2			0	•	7	3		٦	0	•		4		+					6	5		+	
	-		4		0			0			6			0	•	2	3		-	0	•		8		+		0	- 1	2	7		-	+	
	-	2	6	K	0		-	0	,	<i>5</i>	4			0	•		1			0	•	1	4				0	•		6			1	-
ĺ		2	8	<u>.</u>	4			2	·	_	-			-	2	_		-+	-	4	_		٧			Ť	d		ć	- 4	5	G G		-
		-	Ť	-	-									_		-				- 1		-	_			-	+	-	L	-	- 4	<i>(</i> =	X	-
					Н	-							-		_	/			1	_	7								-		_		+	
	_	-	-	-			H			-		-	-		_	- '			-	-	-		-	-	}	7		-	-				+	\dashv
													-		 		f		-	-				-		+		-				+	-	
	-		_		1		-	-			_	+		_			-	1	+	-		-	-	-	\dashv	-+	+					7	+	-
	-						-					+				1		+	+	1	-				+	+	\dashv	-	-	+	7	\dashv	+	\dashv
	-		Н	\dashv	-	-		i	-					-		H		+	+	\dashv	-	-{	-		+	+	+			-	1	+	+	-
		-		\dashv	\dashv	-				-					-	V	-	-	-	+	\dashv	-	-	-+	+	-	+	+	-	-			+	\dashv
ĺ]		1		1		l	!		i				J]	뉘	لاس	بل	<u> </u>	H	l	1		_L				1	_1	_1	L		



Steven thinks de measurement represented 75-80% of the flow Photograph \$5 - Water Quality Sampling SITE Werland sample collected white and Parple DOT 400 DOT Mercury Sample 7007 dollected 10:45 am Conductivity 1164 1308 25°C
Specific Conductivity (Binking) 1308 25°C
7.96 247°C Allegliaity Clear 657 Redox 11:35 an - Evens hot 850 F DR-1-SW - Photo looking Sonta Downstream Photo 9-10 - Photo Looking upot com

	<u></u>		the stranger of the second of		
		(Feer)		1 /sec	
	STATION	DePTH	V ,	$\sqrt{2}$	3
3:05 ANA TO TELUNIDE	19.5	POCE OF	water		
3:20 SM TO ARGENTINE, LOOKING FOR		032	0.07	792 c	108
MYSTERY SEEP ON SOUTH SIDE OF SILVER	195	0.53	0.50	0.49	0,56
CREEK. WAK SOID THE SEEP IS REPORTED	18.3	0.58	032	3,86	0.28
TOBE 1/2 TO 1/4 MILE BEZOW BLAINE. THE	21.55	0.52	1,00	682	490
ARGENTINE SEED IS LY MILE BELOW BLAINE,	348	0.79	091	043	1990
I DROVE UP TO THE BUILDINGS NEAR THE BLAIN	6.86	1 B.75	0,91	FPO	0.95
ADIT AND THEN DROVE O. 5-0.6 MILES	31.0	692	0.83	0.35	0.74
DOWN THE ROAD THAT AUNS ALONG SILVER	_			44 4	19.0
CREEK (THE ROAD UP TO ARGENTING TAILINGS	358	11.09	0.72	6F.O	OF.O
I PARTED THE TRUCK AND WALLED THE	372	0.81	0.52	0.40	0198
ROAD UP TO THEBLAINE ADIT AND THEN	392	0.90	028	FED	023
WALKED DOWN THE CREEK TO THE TRUCK	P. DH	##.	0,60	0.62	0.60
NO.5 to 0.6 MILES, NO EVIDENCE OF	418	$\Box\Box\Box\Box$			
A SEER ON THE SOUTH LINE OF THE CHEEK,	42.8	86,0	0.31	0.80	15,0
	PLANT	Fase	of wate		
TR- 2 Dolores River just above	_/ 	1 7 7 7			
De Diecharge	1 1 100-1 1 1 1 1 1 1	seems to be	9000	We/7	
Acrise @ 5:30 pm - claray 75°F	_;	masurenert	Bation		
	-[7777
Chance of rain		++++++			
5+000 0 0 0 0 0 0	- ` - - - -	+++++			7 7 7 7
Stroom Flow me asuremen @ 12:20 pm	╌╏┝┾┼┼┼┼┼┼	++++++	 	11111	1111
+117/200%	- 	 	 		111
	- : - -+- - -	+++++++++++++++++++++++++++++++++++++++	+++++	 	1111
	- ┡·└ ┤ ┸┸┸┸		`		
					4
	1				

			and the second of	are recorded to the State of th	adolektowa (Balance (
W		@ ₁ 1:45	Flow Mea	54remen		
		1	F+\ V.	V2	Va	Station
			of water	······································	1	49 LO BASE & LOCALES
		D 35	0,06	0.10	80,0	
		0.70	0.10	-0:05	E00=	DR+1 + Dollars River above
		0.0				the Louis Pances
		0.75	0.66	0.69	0.61	
		090	15.1	1.79	1.64	Stroom Flow measurement take 3
		0			·	Dawnstran from Force
			1:31			
		0.86		1.31	1.90	Nato Quality onlinera of
		0.68	0.78 1.85	1.85	4 F./	
		0.15				No Dot Ped Dot
		D.15	102	1 10		195, 8, 4 11, 6 °C
		093	1,22	1.19	170	
	3 8 2	0.33	0.80	8E.O	0.95 0.75	
	33.0	0.51	0.85	0.83	0.70	alcalation deat
	867	0.55		FO.1	1.03	
	37.5	(a) 1.1)	0.65	0.69	-0.56	the archies of stream flow massier
	30.24		10.0- 65.0	-005	-0.02	ment
	39.4	0.5	-10.16	-0.18	-0.10	4 protuces And doing pt
	40.5	D				measurements
	40,9	0.56	0.09	F0,0	0.04	1 5t Varia ABIT
	10,0	0,60	1	0.38	0.38	14 princes of Stais con
75. W	43.8	0.47	0.59	0.58	0,63	
	47.0	0.36	0.61	0.58	0.57	
			· · · · · · · · · · · · · · · · · · ·			

Field Sampling and Stream Flow Measurement Forms

AARCOE0105.00

DR - 1

Dolores River above St. Louis settling pond system

Flow Measurements on 7/19/2002 @ 9:45 am Personnel: Steven Morgenstern, Ana Vargo

Shot Number	Distance (ft)	Distance btw shot numbers (ft)	Depth (ft) at shot number	Average depth btw two shot #s (ft)	velocity measure- ment #1 (ft/sec)	velocity measure- ment #2 (ft/sec)	velocity measure- ment #3 (ft/sec)	Average velocity of #1-3 (ft/sec)	Average Flow Velocity btw two shot #s (ft/sec)	Segment Flow (cfs)
1	12.5	1.1			edge of wa		(lusec)	0.00	0.04	0.007
2	13.6	1.2		0.26			0.08	0.08	0.04	0.014
3	14.8			0.1				0.01	0.00	0.000
4	15.4	3.15		0.375			0	0.00	0.34	0.396
5		3.44	0.75	0.825				0.67	1.18	3.358
6	21.99	0.01	0.9					1.70	0.85	0.004
7	22	3.3	0			0			0.00	
8	25.3	0.3	0	0.43	0	0	0	0.00	0.63	0.081
9	25.6	0.6	0.86	0.82	1.31	1.21	1.26	1.26	1.53	
10	26.2	0.25	0.78	0.465	1.85	1.82	1.74	1.80	0.90	0.105
11	26.45			0.15	0	0	0	0.00	0.00	0.000
12								0.00	0.59	0.047
13		2.2						1.17	1.02	1.418
14									0.84	0.132
15	29.9	3.1	0.72	0.615					0.48	0.906
16				0.53				0.16	0.59	0.995
17	36.2	1.3					1.02	1.02	0.82	0.828
18	37.5			0.865					0.30	
19	38.45			0.46				-0.03	-0.09	-0.038
20	39.4	1.1	0.2	0.1	-0.16		-0.1	-0.15	-0.07	-0.008
21	40.5	0.4	0		.0			0.00	0.04	0.004
22	40.9	1.45					0.07	0.08	0.23	0.193
_ 23	42.35	1.45					0.38	0.38	0.49	0.381
24	43.8	3.2	0.47	0.415				0.60	0.59	0.788
25	47	2.6		0.18			0.57	0.59	0.29	0.137
26	49.6		0	0	edge of wa	ter	L			

Total Flow (cfs): Total Flow (gpm):

cfs): 10.745 pm): 4822.36

Note: USGS 09165000 at Dolores River below Rico, CO

@

9:45 on

07/19/02 =

8.7 cfs

AARCOE0105.00

DR - 2 Dolores River immediately above St. Louis settling pond system outfall Flow Measurements on 7/17/2002 @ 6:20pm

Personnel: Steven Morgenstern, Ana Vargo

Shot Number	Distance (ft)	Distance btw shot numbers (ft)	Depth (ft) at shot number	Average depth btw two shot #s (ft)	velocity measure- ment #1 (ft/sec)	velocity measure- ment #2 (ft/sec)	velocity measure- ment #3 (ft/sec)	velocity measure- ment #4 (ft/sec)	Average velocity of #1-3 (ft/sec)	Average Flow Velocity btw two shot #s (ft/sec)	Segment Flow (cfs)
1	9.5				edge of wa	ter				0.03	0.009
2	11.1	3.4		0.425	0.07	0.05	0.08		0.07	0.29	0.421
3	14.5	3.8	0.53	0.555	0.5	0.49	0.56		0.52	0.42	0.882
4	18.3	3.25	0.58	0.55	0.32	0.36	0.28		0.32	0.64	1.138
5	21.55	3.25	0.52	0.655	1	0.92	0.94		0.95	0.94	1.997
6	24.8		0.79	0.77	0.91	0.92	0.94		0.92	0.93	2.515
7	28.3	2.7	0.75	0.835	0.91	0.97	0.95		0.94	0.89	2.002
8	31	2.8	0.92	1.005	0.83	0.85	0.74	0.91	0.83	0.77	2.180
9	33.8	3.4	1.09	0.95	0.72	0.73	0.7		0.72	0.59	1.911
10	37.2			0.855	0.52	0.4			0.47	0.36	0.621
11	39.2	1.7	0.9	0.835	0.28	0.27	0.23		0.26	0.43	0.615
12	40.9	1	0.77	0.385	0.6	0.62	0.6		0.61	0.30	0.117
13	41.9	0.9	0	0.165	0	0	0		0.00	0.15	0.023
14	42.8	0.1	0.33	0.165	0.31	0.3	0.31		0.31	0.15	0.003
21	42.9		0	0	edge of wa	ter					

Total Flow (cfs):

14.434

DR-2 (7-17-02)

Total Flow (gpm): 6478.059

Note: USGS 09165000 at Dolores River below Rico, CO

@

18:15 on

07/17/02 =

6.5 cfs

Rico DR - 3	AARCOE010 St. Louis Adit	at flume				
Personnel	: Steven Morge	7/16/2002 @3.00 enstern	pm			
9-inch Par used table	shall Flume					
0.46'	=	0.9357 cfs 420 gpm		·		

Rico AARCOE0105.00 DR - 6 Dolores River @ 002 Outfall Flow Measurements on 7/16/2002 @ 1:30 pm Personnel: Steven Morgenstern, Ana Vargo

9-inch Parshall Flume used table

0.17 = 0.204 cfs 91.58 gpm

AARCOE0105.00

DR - 7

Dolores River below St. Louis Ponds Outfall

Flow Measurements on 7/16/2002 @ 12:30 pm

Personnel: Steven Morgenstern, Ana Vargo

Shot Number	Distance (ft)	Distance btw shot numbers (ft)	Depth (ft) at shot number	Average depth btw two shot #s (ft)	velocity measure- ment #1 (ft/sec)	velocity measure- ment #2 (ft/sec)	velocity measure- ment #3 (ft/sec)	velocity measure- ment #4 (ft/sec)	Average velocity of #1-3 (ft/sec)	Average Flow Velocity btw two shot #s (ft/sec)	Segment Flow (cfs)
1	5.8	1.2	0	0.175	edge of wa	ter			0	0.05	0.010
2	7	3	0.35	0.435	0.1	0.1	0.09		0.10	0.27	0.352
3	10	3.7	0.52	0.485	0.42	0.45	0.46		0.44	0.62	1.107
4	13.7	2.3	0.45	0.525	0.75	0.81	0.81		0.79	0.61	0.731
5	16	3	0.6	0.6	0.46	0.43	0.37		0.42	0.87	1.566
6	19	2	0.6	0.5	1.3	1.24	1.42		1.32	1.11	1.112
7	21	2.8	0.4	0.35	0.86	0.99	0.86		0.90	0.67	0.655
8	23.8	3.3	0.3	0.485	0.44	0.44	0.42		0.43	_0.33	0.531
9	27.1	2.8	0.67	0.635	0.21	0.25	0.23		0.23	0.39	0.699
10	29.9	3.1	0.6	0.96	0.52	0.63	0.52		0.56	0.63	1.860
11	33	2.7	1.32	1.365	0.62	0.74	0.72		0.69	1.11	4.074
12	35.7	2.7	1.41	0.705	1.75	1.23	1.74	1.35	1.52	0.76	1.444
13	38.4		0	0	edge of wa	ter					

Total Flow (cfs): Total Flow (gpm):

14.141 6346.37

Note: USGS 09165000 at Dolores River below Rico, CO

@

12:30 on

07/16/02 =

7 cfs

AARCOE0105.00

DR - 26

Dolores River between Columbia Seep and Santa Cruz wetlands

Flow Measurements on 7/14/2002 @ 6:40 pm Personnel: Alan Jewell, Steven Morgenstern

Shot Number	Distance (ft)	Distance btw shot numbers (ft)	Depth (ft) at shot number	Average depth btw two shot #s	velocity measure- ment #1 (ft/sec)	ment #2 (ft/sec)	velocity measure- ment #3 (ft/sec)	Average velocity of #1-3 (ft/sec)	Average Flow Velocity btw two shot #s (ft/sec)	Segment Flow (cfs
1	4	3.5			edge of wa			0.00	0.05	
2			0.75			0.07	0.11	0.10	0.08	
3			0.2	0.1		0.07	0.06	0.07	0.03	
4		2.2	0	0.13		0	0	0.00	0.24	
5	13.2					0.49			0.54	
6	16.5	3.5				0.58		0.59	0.42	
7			0.63	0.625		0.26		0.24	0.28	
8	23			0.625		0.33			0.42	
9									0.27	0.524
10							0.01		0.10	
11				0.635					0.60	
12		3.5							1.08	
13						1.13		1.12	0.93	
14				0.37		0.83		0.74	0.58	
15		2	0.25	0.125			0.42	0.41	0.20	0.05
16	49		0	0	edge of wa	ater				

Total Flow (cfs):

10.359

Total Flow (gpm):

4649.23

Note: USGS 09165000 at Dolores River below Rico, CO

18:45 on

07/14/02 =

6.5 cfs

AARCOE0105.00

DR - 27 Rico Boy/Santa Cruz combined flow Flow Measurements on 7/17/2002 from 10:10am Personnel: Steven Morgenstern, Ana Vargo

	Water depth from bottom of	Volume (cubic ft) (use attached			
	bucket	table)	Time (seconds)	Flow (cfs)	Flow (gpm)
Test 1	0.72	0.902	16.82	0.053627	24.068
Test 2	0.72	0.902	16.53	0.054567	24.490
Test 3	0.74	0.903	17.25	0.052348	23.494
Test 4	0.74	0.903	17.03	0.053024	23.797
		AVG ass	uming 75% of flow	0.053	23.962

100% Flow assuming 75% of flow captured

0.07 31.95

Note: Steven Morgenstern thinks this represents 70% of the actual flow Note: Ana Vargo thinks this represents 75-80% of the actual flow

Note: Used standard 5 gallon bucket (orange)

	seconds
Test 1	16.82
Test 2	16.53
Test 3	17.25
Test 4	17.03

Enter kn	Enter known data pairs:										
		inside									
	height	diameter									
	(ft)	(ft)									
Data 1	0	0.85									
Data 2	1.18	0.935									

Query		
x (sta)	y (elev)	
water	W.S.	
depth	diameter	volume
(ft)	(ft)	(cubic ft)
0 ,	0.850	0.000
0.05	0.854	0.024
0.1	0.857	0.049
	0.861	0.074
- 0.2	0.864	0.099
0.25	0.868	0.125
0.3	0.872	0.151
0.35	0.875	0.177
0.4	0.879	0.203
0.45	0.882	0.229
0.5	0.886	0.256
0.55	0.890	0.283
0.565	0.891	0.291
0:595	0.893	0.307
0.6	0.893	0.310
. 0.65	0.897	0.338
0.7	0.900	0.365
0.725	0.902	0.379
0.75	0.904	0.393
0.8	0.908	0.422
0.85	0.911	0.450
0.9	0.915	0.479
144.0.95	0.918	0.508
) - 41:	0.922	0.537
1.05	0.926	0.567

AARCOE0105.00

DR-1-SW Dolores River side channel/Columbia Tailings Seep

Upstream Site - dolores River flow entering the side channel

Flow Measurements on 7/17/2002 @ 12:50 pm Personnel: Steven Morgenstern, Ana Vargo

Shot Number	Distance (ft)	Distance btw shot numbers (ft)	Depth (ft) at shot number	Average depth btw two shot #s (ft)	ment #1 (ft/sec)	velocity measure- ment #2 (ft/sec)	velocity measure- ment #3 (ft/sec)	Average velocity of #1-3 (ft/sec)	Average Flow Velocity btw two shot #s (ft/sec)	Segment Flow (cfs)
1	2.25	0.4	0	0.145	edge of wa	ter		0.00	-0.03	-0.001
2	2.65	0.45	0.29	0.345	-0.05	-0.05	-0.05	-0.05	-0.03	-0.004
3	3.1	0.4	0.4	0.4	0	-0.01	-0.01	-0.01	-0.01	-0.002
4	3.5	0.4	0.4	0.375	-0.03	-0.01	-0.02	-0.02	-0.03	-0.004
5	3.9	0.4	0.35	0.365	-0.05	-0.02	-0.03	-0.03	-0.02	 -0.003
6	4.3	0.4	0.38	0.375	-0.02	-0.01	0.01	-0.01	0.06	0.009
7	4.7	0.4	0.37	0.35	0.11	0.12	0.14	0.12	0.12	0.017
8	5.1	0.4	0.33	0.405	0.11	0.11	0.13	0.12	0.09	 0.015
9	5.5	0.4			0.06	0.08	0.06	0.07	0.04	0.007
10	5.9	0.1	0.37	0.185	0.03	0.02	0.01	0.02	0.01	0.000
13	6		0	0	edge of wa	ter				

Total Flow (cfs):

0.033

Total Flow (gpm):

14.83

Note: Channel is really shallow; therefore, the measurement will be questionable

AARCOE0105.00

DR-1-SW Dolores River side channel/Columbia Tailings Seep

Downstream Site - flow exiting side channel Flow Measurements on 7/17/2002 @ 12:40 pm Personnel: Steven Morgenstern, Ana Vargo

Shot Number	Distance (ft)	Distance btw shot numbers (ft)	Depth (ft) at shot number	Average depth btw two shot #s (ft)	velocity measure- ment #1 (ft/sec)	velocity measure- ment #2 (ft/sec)	velocity measure- ment #3 (ft/sec)	Average velocity of #1-3 (ft/sec)	Average Flow Velocity btw two shot #s (ft/sec)	Segment Flow (cfs
1	8.4	0.3	0	0.125	edge of wa	ter		0.00	0.01	0.000
2	8.7	0.7	0.25	0.225	0	0.02	0.03	0.02	0.03	0.005
3	9.4	0.7	0.2	0.2	0.04	0.05	0.04	0.04	-0.01	-0.002
4	10.1	0.7	0.2	0.125	-0.07	-0.06	-0.07	-0.07	-0.03	-0.003
5	10.8	0.7	0.05	0.175	0	0	0	0.00	-0.03	-0.003
6	11.5	0.6	0.3	0.285	-0.05	-0.05	-0.05	-0.05	0.09	0.015
7	12.1	1	0.27	0.31	0.24	0.23	0.22	0.23	0.15	0.046
8	13.1	0.6	0.35	0.315	0.08	0.07	0.05	0.07	0.01	0.003
9	13.7	0.8	0.28	0.24	-0.05	-0.04	-0.03	-0.04	-0.04	-0.008
10	14.5	1.3	0.2	0.1	-0.04	-0.05	-0.04	-0.04	-0.02	-0.003
11	15.8	1.7	0	0.1	0	0	0	0.00	-0.02	-0.003
12	17.5	0.3	0.2	0.1	-0.03	-0.03	-0.03	-0.03	-0.02	0.000
13	17.8		0	0	edge of wa	ter				

Total Flow (cfs):

0.048

Total Flow (gpm):

21.32

Note: Channel is really shallow; therefore, the measurement will be questionable

AARCOE0105.00

DR-2-SW Dolores River above Columbia Tailings

Flow Measurements on 7/15/2002 @ 1:40 pm Personnel: Alan Jewell, Steven Morgenstern

Shot Number	Distance (ft)	Distance btw shot numbers (ft)	Depth (ft) at shot number	Average depth btw two shot #s	velocity measure- ment #1 (ft/sec)	velocity measure- ment #2 (ft/sec)	velocity measure- ment #3 (ft/sec)	Average velocity of #1-3 (ft/sec)	Average Flow Velocity btw two shot #s (ft/sec)	Segment Flow (cfs)
1	6	0.7	0	0.105	edge of wa	ater		0.00	-0.03	-0.002
2	6.7	2.3	0.21	0.23	-0.04	-0.05	-0.06	-0.05	-0.05	-0.024
3	9	2	0.25	0.55	-0.09	-0.03	0	-0.04	0.52	0.574
4.	11	2	0.85	1.015	1.11	1.05	1.09	1.08	1.42	2.889
5	13	1	1.18	1.215	1.73	1.81	1.75	1.76	2.05	2.489
6	14	1	1.25	0.775	2.42	2.19	2.39	2.33	2.10	1.625
7	15		0.3	0.665	1.72	1.98	1.88	1.86	1.50	0.399
8	15.4	3	1.03	1.055	1.1	1.09	1.24	1.14	0.97	3.081
9	18.4	1.6	1.08	0.995	0.96	0.7	0.75	0.80	0.91	1.454
10	20	2	0.91	0.865	0.97	1.06	1.04	1.02	0.89	1.540
11	22	2	0.82	0.69	0.73	0.74	0.8	0.76	0.51	0.702
12	24	2	0.56	0.4	0.23	0.28	0.27	0.26	0.20	0.159
13	26	2.4	0.24	0.12	0.11	0.14	0.16	0.14	0.07	0.020
14	28.4		0	0	edge of wa	ater				

Total Flow (cfs):

Total Flow (gpm): 6689.28

14.905

Note: USGS 09165000 at Dolores River below Rico, CO

@

13:45 on

07/15/02 =

7 cfs

AARCOE0105.00

DR - 4 - SW Dolores River below Silver Swan Flow Measurements on 7/14/2002 @ 3:10 pm Personnel: Alan Jewell, Steven Morgenstern

Shot Number	Distance (ft)	Distance btw shot numbers (ft)	Depth (ft) at shot number	Average depth btw two shot #s	velocity measure- ment #1 (ft/sec)	velocity measure- ment #2 (ft/sec)	velocity measure- ment #3 (ft/sec)	Average velocity of #1-3 (ft/sec)	Average Flow Velocity btw two shot #s (ft/sec)	Segment Flow (cfs)
1	6		0		edge of wa		(.000)	0.00	0.44	0.308
2	10.7	0.8					0.85		0.99	
3	11.5									
4	13			0.835		1.06				
5	14.5	1.7	0.85	0.885	1.55	1.39	1.52	1.49	1.41	2.119
6	16.2	1.3	0.92	0.735	1.34	1.34	1.31	1.33	1.63	1.553
7	17.5	1.5	0.55	0.6	1.97	1.8	1.99	1.92	1.32	1.188
	19	1.5	0.65	0.8	0.74	0.65	0.77	0.72	1.11	1.336
9	20.5			1.035	1.63	1.47	1.42	1.51	1.13	1.749
10	22	1.5					0.8	0.75		
11	23.5		0.78	0.815	0.45	0.53	0.59	0.52	0.36	0.440
12	25	1.7	0.85	0.885	0.17	0.19	0.23	0.20	0.35	0.519
13		1.3		0.74					0.61	0.582
14	28								0.37	0.266
15				0.31			0.05	0.01	0.01	
16		0.4	0.21	0.105		-0.02	-0.01	-0.01	-0.01	0.000
17	31.5		0	0	edge of wa	ater				

Total Flow (cfs):

13.836

Total Flow (gpm):

6209.75

Note: USGS 09165000 at Dolores River below Rico, CO

@

15:15 on

07/14/02 =

7 cfs

AARCOE0105.00 Rico DR-7-SW Silver Swan adit Flow Measurements on 7/16/2002 @ 8:00 am Personnel: Steven Morgenstern, Ana Vargo width 1.65 Feet Depth 0.05 Feet

Area of cross-section

0.0825 Square Feet; assuming rectangular section 0.0413 Square Feet; assuming v-ditch section 0.0619 Square Feet; average cross-section

length of time trial

3.75 Feet

cfs		0.036 16 16		
		0.582072	ft/sec	average velocity at surface
		6.4425	sec	Average center of channel
	5	7.6	sec	center of channel
	4	10.94	sec	west side of channel
	3	6.51	sec	center of channel
	2	5.91	sec	center of channel
	1	5.75	sec	center of channel
Time Tri	als			Notes

gpm

AARCOE0105.00

DR-9-SW

Rico Boy/Santa Cruz wetland outlet

Flow Measurements on 7/17/2002 @ approximately 9:00 am

Personnel: Steven Me

Steven Morgenstern, Ana Vargo

The flow is from two channels

East Channel = approximately 75% of flow

West Channel = approximately 25% of flow

NOTE: only measured approximate flow from east channel

	Area 1	Area 2	Area 3	Area 4	
Width	0.1	0.2	0.3	0.1	Feet
Depth	0.05	0.09	0.05	0.025	Feet
Area	0.005	0.018	0.015	0.0025	Square Feet

Area of cross-section

0.0405 Square Feet

length of time trial

3 Feet

Volume

0.12 Feet³

Time Trials		Notes
1	3.22 sec	center of channel
2	3.22 sec	center of channel
3	4 sec	center of channel
4	3.72 sec	center of channel
5	3.72 sec	center of channel

3.576 sec

Average center of channel

	East	West	Total
	Channel	Channel	Flow
cts	0.03	0.01	0.04
gpm	15.25	4.49	19.74

AARCOE0105.00 Rico DR-10-SW Rico Boy /Santa Cruz settling pond discharge Flow Measurements on 7/17/2002 @ 8:00 am Personnel: Steven Morgenstern, Ana Vargo The settling pond discharge is dry The settling pond was approximately 3 feet below crest, draining by seepage /projects/rico/2002 task/Task 11 - sampling and flow meas/flow measurements/DR-10-SWflow.xls 07/31/02 DR-10-SW(7-17-2002)

AARCOE0105.00

SVS-8

Silver Creek downstream of Argentine tailings

Flow Measurements on 7/18/2001 @ 10:05 am Personnel: Steven Morgenstern, Ana Vargo

Shot Number	Distance (ft)	Distance btw shot numbers (ft)	Depth (ft) at shot number	Average depth btw two shot #s (ft)	velocity measure- ment #1 (ft/sec)	velocity measure- ment #2 (ft/sec)	velocity measure- ment #3 (ft/sec)	Average velocity of #1-3 (ft/sec)	Average Flow Velocity btw two shot #s (ft/sec)	 ment
1	3.1	0.5	0	0.17	edge of wa	ter			0.02	0.002
2	3.6	0.4	0.34	0.395	0.04	0.04	0.06	0.05	0.04	0.007
3	4	0.4	0.45	0.415	0.05	0.04	0.03	0.04	0.10	0.017
4	4.4	0.4	0.38	0.44	0.18	0.18	0.14	0.17	0.10	0.017
5	4.8	0.4	0.5	0.53	0.03	0.03	0.02	0.03	0.03	0.005
6	5.2	0.45	0.56	0.575	0.03	0.02	0.02	0.02	0.02	0.004
7	5.65	0.6	0.59	0.58	0.01	0.02	0	0.01	0.27	0.095
8	6.25	0.55	0.57	0.49	0.55	0.53	0.53	0.54	0.46	0.123
9	6.8	0.4	0.41	0.315	0.35	0.39	0.39	0.38	0.48	0.061
10	7.2	0.5	0.22	0.25	0.59	0.58	0.59	0.59	0.32	0.040
11	7.7	1.4	0.28	0.14	0.05	0.06	0.05	0.05	0.03	0.005
21	9.1		0	0	edge of wa	ter				

Total Flow (cfs): 0.377 Total Flow (gpm): 169.0708

Rico AARCOE0105.00

SVS-12 Argentine tailings seep at source Flow Measurements on 7/18/2002 @ 10:30 am Personnel: Steven Morgenstern, Ana Vargo

3-inch Parshall Flume used table

0.15 ft =

0.0527 cfs 23.66 gpm

AARCOE0105.00

SVS-20

Silver Creek just above confluence with Dolores River

Flow Measurements on 7/18/2002 @ 7:55 am Personnel: Steven Morgenstern, Ana Vargo

Shot Number	Distance (ft)	Distance btw shot numbers (ft)	Depth (ft) at shot number	Average depth btw two shot #s (ft)	velocity measure- ment #1 (ft/sec)	velocity measure- ment #2 (ft/sec)	velocity measure- ment #3 (ft/sec)	Average velocity of #1-3 (ft/sec)	Average Flow Velocity btw two shot #s (ft/sec)	Segment Flow (cfs)
1	1.9	1.2	0	0.09	edge of wa	ter			0.03	 0.003
2	3.1	0.4	0.18	0.155	0.05	0.05	0.06	0.05	0.03	0.002
3	3.5	0.35	0.13	0.175	0	0	0	0.00	0.12	0.007
4	3.85	0.55	0.22	0.225	0.22	0.29	0.22	0.24	0.22	0.028
5	4.4	0.5	0.23	0.325	0.19	0.24	0.18	0.20	0.29	0.048
6	4.9	0.55	0.42	0.46	0.34	0.37	0.44	0.38	0.28	0.070
7	5.45	0.55	0.5	0.41	0.13	0.18	0.2	0.17	0.09	0.020
8	6	0.5	0.32	0.31	0.02	0	0.01	0.01	-0.01	-0.001
9	6.5	0.4	0.3	0.265	-0.02	-0.02	-0.03	-0.02	-0.01	-0.001
10	6.9	1	0.23	0.115	0	0	-0.01	0.00	0.00	0.000
11	7.9		0	0	edge of wa	ter				

Total Flow (cfs): Total Flow (gpm):

0.175

78.51

AARCOE0105.00

SVS-22

Silver Creek just above Argentine tailings seep

Flow Measurements on 7/18/2002 @ 12:30 pm Personnel: Steven Morgenstern, Ana Vargo

Shot	Distance	Distance btw shot numbers	Depth (ft)	Average depth btw		velocity measure- ment #2	velocity measure- ment #3	velocity measure- ment #4	Average velocity of #1-3	Average Flow Velocity btw two shot #s		Segment
Number	(ft)	(ft)	number	#s (ft)	(ft/sec)	(ft/sec)	(ft/sec)	(ft/sec)	(ft/sec)	(ft/sec)		Flow (cfs)
1	2.3				edge of wa					0.01	· · · · · · · · · · · · · · · · · · ·	0.000
2	2.45	0.25	0.48	0.465	0.02	0.03	0.02		0.02	0.01		0.001
3	2.7	0.75	0.45	0.59	0	-0.01	0		0.00	0.01		0.006
4	3.45	0.55	0.73	0.7	0.04	0.03	0.02		0.03	0.12		0.047
5	4		0.67	0.625		0.21	0.22		0.21	0.11		0.042
6	4.6	0.4	0.58	0.58		0	0		0.01	0.01		0.003
7	5			0.6		0.02	0.02		0.02	0.01		0.003
8	5.5				0.01	0			0.00	0.03		0.011
9	6.05						0.06		0.06			0.022
10	6.6					0.06	0.05		0.06	0.03		0.010
11	7.1					0			-0.01	0.01		0.004
12	7.6	1.1	0.75			0.02	0.03		0.03	0.03		0.027
13	8.7	0.6	0.8	0.765	0.01	0.02	0.06	0.04	0.03	0.08		0.035
14	9.3	0.5	0.73	0.625	0.13	0.12			0.12	0.19		0.058
15	9.8		0.52						0.25	0.27		0.061
16	10.3		0.4				0.26		0.28	0.11		0.026
17	11		0.25	0.125	-0.06	-0.05	-0.05		-0.05	-0.03		-0.002
18	11.7		0	0	edge of wa	ter						<u> </u>

Total Flow (cfs):

0.353

Total Flow (gpm): 158.5207

AARCOE0105.00

SVS - 26

Unknown adit downstream of tramway, southside of Silver Creek Flow Measurements on 7/19/2002 from 11:45 am

Personnel: Steven Morgenstern, Ana Vargo

	Water depth from bottom of bucket	Volume (cubic ft) (use attached table)	Time (seconds)	Flow (cfs)	Flow (gpm)
Test 1	0.55	0.89	184.47		
Test 2	0.55	0.89	183.37	0.0049	2.178
Test 3	0.69	0.899	228.32	0.0039	1.767

AVG assuming 98% of flow 0.0045 2.037

100% of the flow assuming 98% of the flow captured

0.0046

2.078

Note: Flow measurement using bucket captured 98% of the flow

Note: Used standard 5 gallon bucket (orange) and funnel

	minutes	seconds	Decimal Minutes	seconds
Test 1	3	4.47	3.07	184.47
Test 2	3	3.37	3.06	183.37
Test 3	3	48.32	3.81	228.32

Enter known data pairs:										
		inside								
	height	diameter								
	(ft)	(ft)								
Data 1	* is 0	0.85								
Data 2	1.18	0.935								

Query	Result	
x (sta)	y (elev)	
water	w.s.	
depth	diameter	volume
(ft)	(ft)	(cubic ft)
	0.850	0.000
0.05	0.854	0.020
0.1	0.857	0.041
0.15	0.861	0.061
0.2	0.864	0.082
0.25	0.868	0.104
0.3	0.872	0.125
	0.875	0.147
0:4	0.879	0.169
0:45	0.882	0.191
**· 0.5	0.886	0.214
0.55	0.890	0.236
0.565	0.891	0.243
0.595	0.893	0.257
0.6	0.893	0.259
0.65	0.897	0.283
0.7	0.900	0.306
0.725	0.902	0.318
-, 0.75	0.904	0.330
0.8	0.908	0.354
0185	0.911	0.378
0.9	0.915	0.403
0.95	0.918	0.428
1	0.922	0.453
1.05	0.926	0.478

APPENDIX A3

Chain of Custody Forms

CLIENT INFO			•	ACZ	#:	•				
COLOR BING C	RMATION									
Name to appe	ar on Report an	d Invoice		Carbo	n Copy	/: F	Report:			nvo
SEL			<u> </u>	<u> </u>	<u></u>		: **			
263	7 MIDP	OINT DRIV	E,SIE F		<u>.</u>	· ·	· .		-	
		, 60 805				-	· · · ·		<u> </u>	· . i .
Attn: 5. MO	RGENSTER!	V Tel: (970)18	4-3611	Attn:	: .	<u></u>		Tel:	· · · · ·	· .
		@ selinc.		Email		<u> </u>	· · · · · · · · · · · · · · · · · · ·			
PROJECT INF					ANALY	SES RE	QUESTE	D (req	uired; at	tach
Client Project	name and/or PC	OUIS POMAS					∇	ನ	I	
AA	R COEDIO	5.00 / TASK	11	<u>۽</u>	4	-		DATIO!	/AR	
Shipping Com				Containers	TSS	705	$ \bar{S} $		1	
Tracking #:				9			ISSOLVED	RECOV	NE3S	`
SAMPLE	DENTIFICATION	DATE:TIME	Matrix	•		1	*	8		
DR-4-	SW	7-14-02 15.	25 JW	6	X	×	4	X	X	}
DR-28		7-14-02 17:	30 SW	4	メ	X	X	X	ン	1
DR-26		7-14-02 18:	40 SW	5	メ	X	1	X	4	د
DR-2-	5W	7-15-02 13:	40 SW	5	X	X	K	X	X	}
			*							
	¥.	A Section 1	* -	+					7.	
1		A.E.								
) **g***		1		\$ \\\					
		5 (4) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4								
						- 5				
				<u> </u>		· :				
				1	1	ļ. '	1			

4.4

ALZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Quote #:	. :		ACZ	. #:		,				
CLIENT INFORMATION										
Name to appear on Report and	Invoice		Carbo	on Cop	χ: Ι	Report		_ 1	nvoice	:
SEH, INC.			11.	#2-E	<u> </u>					
2637 MIDPOINT D		_								
FORT COLLINS, CQ	80525								<u>/</u>	
Attn: S. MOR GENSTERN	Tel: 484-3611	_ ,	Attn:		•		Tel:			4.
Email: SMORGENSTERME	SEHINC COM	<u>.</u>	Email	:	· .			· . ·		
PROJECT INFORMATION				ANALY	SES RE	QUEST	ED (req	uired; at	tach list)
Client Project name and/or PO	•			. "		8.7	18 .		7 333	
AKO/ST. LOUB PO.	20V		of Containers	NY		17	6		X	7
AARLO EO105, OT	0,00011	-	ag .	70	4 21	The state of	2 2	20,	3	1 K
Shipping Company: Tracking #:			၂ ဦ	3	7 3	2 3	36	5		\$ 37
	- BATETINE		*	2,5	SULFIA	7023W	15 TA	2	MERC	POTENTIAL
SAMPLE IDENTIFICATION		Matrix	<u> </u>			36	 	<u> </u>	4	20
DR-7-5W	7-16-02 0:84		6	X	X	4	C	$ \times $	X	
DR-7	7-16-02 12:10	SW	6	×		A	D	λ	X	<u> </u>
DR-6	7-16-02 13:30	SW	6	X		B	<u>C</u>	MX		F
DR-3	7-16-02 14:20	ŚW	7	×	X	B	E	X	X	6
		33				and the second	. 1	اد د موندر به :		
7-16-02-15:55 p	have call to CA	BRIE	ELK	W	A.			and in the	y ·	
added FeII Y	FeII to Dr.	7-5W	¥	DR-	3			12	1	
		1			a was		- 1847 - 1847	λ		1
i k								1		
			1			· ·		1		
			/							
		(7.	4	- <u> </u>			 	\
Matrix SW (Surface Water)	SW (Ground Water) · V	//////////////////////////////////////	e Wate		(Drinkì	ng Wat	er)	!	<u> </u>	النب ا
Options SL (Sludge) SO (Soil)	- OL (Oil) · Other (Spe	ecify)	د دود	1						
REMARKS										
A= Cd, Cu, Pb, Ma, A	1, Se, Ag, ZA	$C = A_i$	C_{r}	te D	= (1)	Fe	E=	Caso	MA	, 2h, (a Ao
A = Cd, Cu, Pb, Mn, N B = Cd, Cu, Fe, Pb, N	In, Ni, Se, Ag,	ZAE=	As C	2.6	Cu.	Ma	Zn. F		- 101	Vi Co
							<u> </u>			A
RELINQUISHED BY:	DATE:T			RECEIV	ABUBY		O.	ATE:TI	WE	PAGE
STEVEN MORGENSTERN	1 16-02	14:40		<u> </u>	<u></u>	- 22			1,78	
		***	/_		· · · · · · · · · · · · · · · · · · ·		<u> </u>			Of
1.	N. A.		\mathbf{F}/\mathbb{C}	• •				•	* •.	N 40 %

2.30

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

CHAIN of CUSTODY

Quote #:			ACZ	:#:				9	·	1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
			06							
Name to appear on Report and	Invoice		Carbo	on Copy	y: I	Report:	·	_ '	nvoice:	·
SEH, INC.		- :				-				<u> </u>
2637 MIOPOINT DR.		- \								
FORT COLLINS, CO	80525	- :								•
Attn: 5. MORGENSTERN	Tel: 484336//	_	Attn:	·		· .	Tel:			
Email: SMORGENSTERN	Va)SEHINC.C	om	Email	:	<u> </u>					
PROJECT INFORMATION				ANALY	SES RE	QUEST	ED (requ	ired; at	tach list,)
Client Project name and/or PO#				2	1.3a.	7 6		1 /i	Š.,	
RICO/ST, LOUIS P			of Containers	35		2 3			· 图	
AARLOE 0105.0	0.00011		ntalı	30	DISSOLVED METALS	1 8		3	100	
Shipping Company:			ပြီ	にる	35	3 3	H	3		j j
Tracking #:			Ŏ #:	3 %	255	METALS-	1	L IU	,	
SAMPLE IDENTIFICATION	DATE:TIME	Matrix		5 x	10	17. 18.0	12	Z		
DR-10-5W	7-17-02- (64)	5-16	5	X	#				A	
DR-19-5W	7-17-02 09:00	SW	5	X	A	B			#	*
DR-27	7/17/02 10:45	SW	6	X	A		X	X		
DR-1-5W	7/17/02 11:45		5	X	A	C	X	4		
212- 50	7/17/02 13:45		7	- ý - ,				X		
DR-25	7/17/02 14:45	-				,		X	7	9
SN2-12	7/17/02 14:36	7 6						X		
DR-24	7/17/02 14:57	· · · · · · · · · · · · · · · · · · ·	;	*	,			X		
		T							1	<u> </u>
		1		15,-				 		
	<u> </u>			10 3					-	
Matrix SW (Surface Water) · (I SW (Ground Water) · '	WW (Wast	te Wate	r) · DW	(Drinki	ng Wat	L er)	L	L	L
Options SL (Sludge) · SO (Soil)	•	-		Ì	44	¥				
REMARKS		property.								
A=Cd, Cu; Pb, Mn, N B=Cr, Fe	ri, Se, Ag, ZA	•				Ž.			14.	٠.
C= As, Ci, Fe	•			1			•			
RELINQUISHED BY:	DATE:	TIME :		RECEIV	/ED BY		D	ATE:TI	ME	PAGE
STEVEN MORGENSTEAN	7/17/02	15:00				•				
4	199	_ -		•	. '					Of
	1			(42) (1)	*					

L -2. -2.

ACZ Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

CHAIN of CUSTODY

Quote #:		f^{X}	ACZ	#7					e en	1 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
CLIENT INFORMATION					i y					
Name to appear on Report ar	of Invoice		Carbo	n Copy	/: F	Report:		, lı	nvoicë:	
SEH, INC.	<u> </u>	, in the second							, ,	
2637 MIDPOINT	DR, Ste F		·	· .	· ·	·	· ·			
FORT COLLINS,	10 80525									•
Attn: S, MORGENSTE			Attn:			· 	Tel:	•		11800
Email: SMORGENSTEA	NO SEHINC, COM	`	Email	•	<u> </u>		- 100 mg	<u> </u>		
PROJECT INFORMATION				ANALY	SES RE	QUEST	D (requ	ired; at	tach list,	
Client Project name and/of P RICO/ST LOVIS AAR(OF 0105-0	ronos.		of Containers	5, CN,	, s oa.	- 707AL	FeII	m, r	19%	9 . s.
Shipping Company: UPS Tracking #: SAMPLE IDENTIFICATION		Matrix	# of Cor	25, TS	DISSOLV METAL	METALS-	Fe II,	SVLFATE, ACIDITY	MERCUR	
DR-2	4.5	- 1 · 1	5	X	A	B		 	k .	راند الإيران الايد الإيران
SVS-20	7/18/02 08:30 -	ŚW	5	X	A	B				
5VS-8	1/18/02 09:35	SW	5	X	A	В	٠,	4		
SVS-12	7/18/02 11:00	SW	5	X	A	<i>C</i>	X	×		
DR-24	7/8/02 10:45	sw	5	X	A	<u>C</u>	×	*		-
DR-25	7/10/02 11:30	SW	5	X	A	C	X	×	-	Ÿ.
DR-7-5W		SW	1	,		,	X	3		A COLUMN
SVS-22	7/18/02 12:50 5	w	5	X	A	\mathcal{B}	`	*		
DR-7	7/18/02 14:10 .	SW	1	3.7		7:		,	X	
DR-3	1777	s W	1	×			7.		X	*
	1 1 1 A A	× 50								
	THE AT		-	·			مسر	2		
1	· GW (Ground Water) W		e Wate	r) - DW	(Drinki	ng Wat	er)			
Options SL (Sludge) - SO (Si REMARKS	лу От (Oil) Other (aped						5, <u></u>			
A=Cd, Cu, Pb, Mn, N	, Se, Ag, ZA DA	-7-SV TERE	V-> 1	FILT	ER /	NL	AB	NAS	Non	
B = Cr, Fe C = As, Cr, Fe	FIL	TEKE	5 IN	FIEL	D_					
RELINQUISHED BY:	DATE:TIM	IE .		RECEIV	/ED BY		D	ATE:TI	ME	PAGE
STEVEN MORGENSTE		4:40					V,			1
	, , , , ,					·				Of
<u> </u>				1,3	F			-		1
				. 5.2			ــــــــــــــــــــــــــــــــــــــ			سيسا

Laboratories, Inc.

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

CHAIN of CUSTODY

Quote #:				ACZ	#:	•	:		• • •		
CLIENT INFORMATION								3.			
Name to appear on Report and	Invoice		•, •	Carbo	on Cop	y: I	Report:		Į.	nvoice:	
SEH, INC.	· · · · · · · · · · · · · · · · · · ·		_				· · · · · · · · · · · · · · · · · · ·				
2637 MIOPOINT OR,	Suite F	•	_								
FORT COLLINS, CO.							· 		<u></u>		
Attn. STEVEN M.	Tel: 484-	-3611	• · .	Attn:				Tel:		·	<u> </u>
Email: SMORGENSTEANG	DSEHINE.	com	•	Email	: .				<u></u>		· · ·
PROJECT INFORMATION					ANALY	SES RE	QUEST	ED (requ	iired; at	ach list	
Client Project name and/or PO# AI(O/ST, LOVIS PONI AAR(OEO/OS, OO, OOO Shipping Company: Tracking #:	os 🗼	the year		of Containers	ARANESS, CA	DISSOLVED METALS	AL AEROVEMAB	* A CO			
SAMPLE IDENTIFICATION	DATE:	TIME	Matrix	*	マま	210	10171 10171	學			<u>.</u>
DR-20	7/19/02	08:40	SW	5	X	A	B				
DR-1	7/19/02	10:10	5W	5	X	A	B			ξ	
SVS-26	7/19/02	/2:20	SW	5	X	A	C				
				[4						
	1	Y	· ·		1						
建 龙	k 3	17. 50	V) 3	**				-375			,
to and the	¶ (N.≜		v 27								7
	7										
```	1										
<del></del>	ţ	· · · · ·					<u> </u>				in the second
							,	l			1
<u> </u>				<del></del>	<u> </u>	<b></b>		}	<del> </del>	<del> </del>	_
Matrix SW (Surface Water) · (	-	-		e Wate	st) · DW	(Drinki	ng Wat	er)	<b>!</b>	A.meri	L
Options   SL (Sludge) · SO (Soil) REMARKS	· OL (OII) · C	Jiner (Spe	спу)								
1 = Cd, Cu, Pd, Ma,	Ni, Se,	A,Z	<b>,</b>			Ç	- As	Cr	. Fe		
B=Cr, Fe		•		1		٠.	•	•	-		
RELINQUISHED BY:		DATE:T	IME		PECEL	VED BY	<b>,</b>		ATE:TI	ME	PAGE
		· · · · · · · · · · · · · · · · · · ·			KEUEI	WED D		, U		W.C.	PAGE
STEVEN MORGENISTERN	7//	1/02	4.00		<del> </del>				·	<del></del>	
<u> </u>				<del> </del>			<del></del>	-			Of
		***									ł

#### **APPENDIX B**

**Analytical Report Package** 

### **ACZ** Laboratories, Inc.

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Analytical Report

Steven Morgenstern	
SEH	
2637 Midpoint Drive	Suite F
Fort Collins, CO 805	25

August 12, 2002

Project: L37682

Steven Morgenstern:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on July 18, 2002. This project has been assigned to ACZ's project number, L37682. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan, version 9.0. The enclosed results relate only to the samples received under L37682. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Please assess the enclosed report only in its entirety. ACZ prohibits the reproduction of this report, except in full, without the written approval of ACZ. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after September 12, 2002. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years. Please notify your Project Manager if you have other needs.

If you have any questions, please contact your Project Manager or Customer Service Representative.

State Bankay

12/Aug/02

Sue Barkey, Project Manager, has reviewed and accepted this report in its entirety.

### **ACZ** Laboratories, Inc.

2773 Downhill Drive Steamboat Springs, CO 80487(800) 334-5493

#### Inorganic Analytical Results

SEH

Project ID:

AARCOE0105.00.00011

Sample ID:

DR-9-SW

ACZ ID: L37682-01

Date Sampled:

07/17/02 09:00

Date Received:

07/18/02

Sample Matrix:

Surface Water

 -1-	Ana	

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Cadmium, dissolved	M200.7 ICP		U	mg/L	0.003	0.02	08/01/02 23:03	bf
Calcium, dissolved	M200.7 ICP	134		mg/L	0.2	1	08/01/02 23:03	bf
Chromium, total recoverable	M200.8 ICP-MS		U	mg/L	0.0001	0.0005	08/02/02 7:23	lcj
Copper, dissolved	M200.8 ICP-MS	0.002	В	mg/L	0.001	0.005	08/02/02 2:24	lcj
Iron, total recoverable	M200.7 ICP	1.69		mg/L	0.01	0.05	07/30/02 15:54	bf
Lead, dissolved	M200.8 ICP-MS		U	mg/L	0.0005	0.003	08/04/02 5:20	lcj
Magnesium, dissolved	M200.7 ICP	21.9		mg/L	0.2	1	08/06/02 21:02	kdw
Manganese, dissolved	M200.7 ICP	9.060		mg/L	0.005	0.03	08/06/02 21:02	kdw
Nickel, dissolved	M200.7 ICP		U	mg/L	0.01	0.05	08/06/02 21:02	kdw
Selenium, dissolved	M200.8 ICP-MS		U	mg/L	0.003	0.02	08/02/02 2:24	lcj
Silver, dissolved	M200.8 ICP-MS		υ	mg/L	0.0001	0.0005	08/02/02 2:24	lcj
Zinc, dissolved	M200.7 ICP	0.04	В	mg/L	0.01	0.05	08/01/02 23:03	bf

#### Metals Prep

Parameter	EPA Method	R	esult Qual	Units	MDL F	QL .	Date	Analyst
Total Recoverable Digestion	M200.2 ICP					07/2	9/02 11:52	dlm
Total Recoverable Digestion	M200.2 ICP-MS					07/3	1/02 16:36	jb

#### Wet Chemistry

Trot Officiality								
Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Cyanide, WAD	SM4500-CN I-Colorimetric w/ distillation		U	mg/L	0.005	0.01	07/25/02 10:33	kb
Hardness as CaCO3	SM2340B - Calculation	425		mg/L	1	7	08/12/02 8:37	calc
Residue, Filterable (TDS) @180C	M160.1 - Gravimetric	540		mg/L	10	20	07/19/02 10:07	Isa
Residue, Non- Filterable (TSS)	M160.2 - Gravimetric	12	В	mg/L	5	20	07/19/02 12:18	Isa

2773 Downhill Drive Steamboat Springs, CO 80487(800) 334-5493

### Inorganic Analytical Results

SEH

AARCOE0105.00.00011 Project ID:

Sample ID:

**DR-27** 

ACZ ID: L37682-02

Date Sampled:

07/17/02 10:45

Date Received:

07/18/02

Sample Matrix:

Surface Water

Metals	

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Arsenic, total recoverable	M200.8 ICP-MS		U	mg/L	0.0005	0.003	08/02/02 7:37	lcj
Cadmium, dissolved	M200.7 ICP		U	mg/L	0.003	0.02	08/01/02 23:07	bf
Calcium, dissolved	M200.7 ICP	306		mg/L	0.2	1	08/01/02 23:07	bf
Chromium, total recoverable	M200.8 ICP-MS		U	mg/L	0.0001	0.0005	08/02/02 7:37	lcj
Copper, dissolved	M200.8 ICP-MS	0.010		mg/L	0.001	0.005	08/02/02 4:50	lcj
Iron, Ferric	Calculation (Total Fe - Ferrous Fe)		U	mg/L	0.01	0.01	08/12/02 0:00	calc
Iron, total recoverable	M200.7 ICP	0.01	В	mg/L	0.01	0.05	08/10/02 15:12	bf
Lead, dissolved	M200.8 ICP-MS		U	mg/L	0.0002	0.001	08/02/02 4:50	lcj
Magnesium, dissolved	M200.7 ICP	43.0		mg/L	0.2	1	08/06/02 21:06	kdw
Manganese, dissolved	M200.7 ICP	0.086		mg/L	0.005	0.03	08/06/02 21:06	kdw
Mercury, total	M1631, Atomic Fluorescence		U	ug/L	0.0002	0.0005	08/06/02 14:03	lcj
Nickel, dissolved	M200.7 ICP		U	mg/L	0.01	0.05	08/06/02 21:06	kdw
Selenium, dissolved	M200.8 ICP-MS		U	mg/L	0.003	0.02	08/02/02 4:50	lcj
Silver, dissolved	M200.8 ICP-MS		U	mg/L	0.0001	0.0005	08/02/02 4:50	lcj
Zinc, dissolved	M200.7 ICP	0.92		mg/L	0.01	0.05	08/01/02 23:07	bf

### **Metals Prep**

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Total Recoverable Digestion	M200.2 ICP					07	/31/02 11:52	dlm
Total Recoverable Digestion	M200.2 ICP-MS					07	/31/02 16:50	jb

#### Wet Chemistry

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Cyanide, WAD	SM4500-CN I-Colorimetric w/ distillation		U	mg/L	0.005	0.01	07/25/02 10:34	kb
Hardness as CaCO3	SM2340B - Calculation	942		mg/L	1	7	08/12/02 0:00	calc
Iron, Ferrous	SM 3500 Fe-D		UH	mg/L	0.01	0.05	07/19/02 19:14	wfg
Residue, Filterable (TDS) @180C	M160.1 - Gravimetric	1160		mg/L	10	20	07/19/02 10:09	Isa
Residue, Non- Filterable (TSS) @105C	M160.2 - Gravimetric	10	В	mg/L	5	20	07/19/02 12:22	Isa

2773 Downhill Drive Steamboat Springs, CO 80487(800) 334-5493

## Inorganic Analytical Results

SEH

AARCOE0105.00.00011 Project ID:

Sample ID:

DR-1-SW

ACZ ID: L37682-03

Date Sampled:

07/17/02 11:45

Date Received:

07/18/02

Sample Matrix:

Surface Water

Metals Analysis

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Arsenic, total recoverable	M200.8 ICP-MS		υ	mg/L	0.001	0.005	08/02/02 7:42	lcj
Cadmium, dissolved	M200.7 ICP		U	mg/L	0.003	0.02	08/01/02 23:12	bf
Calcium, dissolved	M200.7 ICP	86.1		mg/L	0.2	1	08/01/02 23:12	bf
Chromium, total recoverable	M200.8 ICP-MS		U	mg/L	0.0002	0.001	08/02/02 7:42	lcj
Copper, dissolved	M200.8 ICP-MS	0.003	В	mg/L	0.001	0.005	08/02/02 4:55	lcj
Iron, Ferric	Calculation (Total Fe - Ferrous Fe)		U	mg/L	0.01	0.01	08/12/02 0:00	calc
Iron, total recoverable	M200.7 ICP	0.53		mg/L	0.01	0.05	08/10/02 15:16	bf
Lead, dissolved	M200.8 ICP-MS		U	mg/L	0.0002	0.001	08/02/02 4:55	lcj
Magnesium, dissolved	M200.7 ICP	10.6		mg/L	0.2	1	08/06/02 21:20	kdw
Manganese, dissolved	M200.7 ICP	0.188		mg/L	0.005	0.03	08/06/02 21:20	kdw
Mercury, total	M1631, Atomic Fluorescence		U	ug/L	0.0002	0.0005	08/06/02 14:16	lcj
Nickel, dissolved	M200.7 ICP		U	mg/L	0.01	0.05	08/06/02 21:20	kdw
Selenium, dissolved	M200.8 ICP-MS		U	mg/L	0.003	0.02	08/02/02 4:55	lcj
Silver, dissolved	M200.8 ICP-MS		U	mg/L	0.0001	0.0005	08/02/02 4:55	lcj
Zinc, dissolved	M200.7 ICP	0.58		mg/L	0.01	0.05	08/01/02 23:12	bf

Metals Prep

Parameter	EPA Method	Result Qual	Units MDL PQL	Date	Analyst
Total Recoverable	M200.2 ICP			07/31/02 12:12	dim
Total Recoverable	M200.2 ICP-MS			07/31/02 17:03	jb

Wet Chemistry

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Cyanide, WAD	SM4500-CN I-Colorimetric w/ distillation		U	mg/L	0.005	0.01	07/25/02 10:36	kb
Hardness as CaCO3	SM2340B - Calculation	259		mg/L	1	7	08/12/02 0:00	calc
Iron, Ferrous	SM 3500 Fe-D	0.02	вн	mg/L	0.01	0.05	07/19/02 19:21	wfg
Residue, Filterable (TDS) @180C	M160.1 - Gravimetric	340		mg/L	10	20	07/19/02 10:12	Isa
Residue, Non- Filterable (TSS)	M160.2 - Gravimetric	10	В	mg/L	5	20	07/19/02 12:26	Isa

Note: Sample was received and analyzed after the holdtime for Ferrous Iron analysis had expired.

L37682: Page 4 of 13

**Inorganic Analytical** Results

SEH

AARCOE0105.00.00011

Project ID: Sample ID:

**SVS-20** 

ACZ ID: L37682-04

Date Sampled:

07/17/02 13:45

Date Received:

07/18/02

Sample Matrix:

Surface Water

Metals Analysis

Qual Units. **EPA** Method Result MDL PQL Date Parameter . U ug/L 0.0002 0.0005 08/06/02 14:25 M1631, Atomic Fluorescence Mercury, total

REPIN.01.11.00.01

L37682: Page 5 of 13



SEH

Project ID: AARCOE0105.00.00011

Sample ID:

DR-25

ACZ ID: L37682-05

Date Sampled:

07/17/02 14:45

Date Received:

07/18/02

Sample Matrix:

Surface Water

Metals Analysis

Parameter	EPA Method Result	Qual	Units	MDL PQL	Date	Analyst
Mercury, total	M1631, Atomic Fluorescence	U	ug/L	0.0002 0.0005	08/06/02 14:30	lcj

REPIN.01.11.00.01

L37682: Page 6 of 13



SEH

ACZ ID: L37682-06

Project ID:

AARCOE0105.00.00011

Date Sampled:

07/17/02 14:36

Sample ID:

**SVS-12** 

Date Received:

07/18/02

Sample Matrix:

Surface Water

Metals Analysis

Parameter	EPA Method Result	Qual	Units	MDL PQL	Date	Analyst
Mercury, total	M1631, Atomic Fluorescence	U	ug/L	0.0002 0.0005	08/06/02 14:34	lcj

REPIN.01.11.00.01

L37682: Page 7 of 13



SEH

Project ID:

AARCOE0105.00.00011

Sample ID:

DR-24

ACZ ID: L37682-07

Date Sampled:

07/17/02 14:57

Date Received:

07/18/02

Sample Matrix:

Surface Water

Metals Analysis

Motals / Walysis						
Parameter	EPA Method Res	ult Qual	Units	MDL PQL	Date	Analyst
Mercury, total	M1631, Atomic Fluorescence	U	ug/L	0.0002 0.0005	08/06/02 14:48	lci

Inorganic Reference

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493.

		Exp		

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest

Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

### QC Sample Types

AS	Analytical Spike (Post Digestion)	LFM	Laboratory Fortified Matrix
ASD	Analytical Spike (Post Digestion) Duplicate	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
LCSS	Laboratory Control Sample - Soil	MS/MSD	Matrix Spike/Matrix Spike Duplicate
LCSW	Laboratory Control Sample - Water	PBS	Prep Blank - Soil
LFB	Laboratory Fortified Blank	PBW	Prep Blank - Water

### QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method.

Spikes/Fortified Matrix Determines sample matrix interferences, if any.

### ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- R Poor spike recovery accepted because the other spike in the set fell within the given limits.
- T High Relative Percent Difference (RPD) accepted because sample concentrations are less than 10x the MDL.
- U Analyte was analyzed for but not detected at the indicated MDL
- V High blank data accepted because sample concentration is 10 times higher than blank concentration
- W Poor recovery for Silver quality control is accepted because Silver often precipitates with Chloride.
- X Quality control sample is out of control.
- Z Poor spike recovery is accepted because sample concentration is four times greater than spike concentration.

### Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

#### Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

ACZ	Laboratories, I	nc.
	G. I G. G. GO GO 405 (6)	

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Sample Receipt

SEH	
AARCOE0105.00.0001	1

ACZ Project ID: Date Received: L37682 7/18/02

Received By:

TONYA

				tion

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Are the trip blanks (VOA and/or Cyanide) present?
- 12) Are samples requiring no headspace, headspace free?
- 13) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		1
1		
		1
1		
. √		
<b>V</b>		
1		
√		
4		
1		
		1
		1
		1

### Exceptions: If you answered no to any of the above questions, please describe

N/A

### Contact (For any discrepancies, the client must be contacted)

N/A

### Shipping Containers

Cooler Id	Temp (°C	Rad (µR/hr)
ACZ	8.7	12
	<del></del>	

#### Note

SAMPLES MARKED AS 'NO' WERE pH=6 - ADDED 2mL NaOH RESULTING IN A pH=2.

Sample Receipt

AARCOE0105.00.00011

ACZ Project ID:

L37682

Date Received:

7/18/02

Received By:

TONYA

SAMPLE	CLIENT ID	R < 2	G < 2	Y<2	YG<2	B<2	BG< 2	0<2	T >12	P >12	N/A	RAD
L37682-01	DR-9-SW	N	Υ							Υ		
L37682-02	DR-27	Υ	Υ							Υ		
L37682-03	DR-1-SW	N	Υ							Υ		
L37682-04	SVS-20										0	
L37682-05	DR-25										0	
L37682-06	SVS-12										0	
L37682-07	DR-24					_					0	

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

CHAIN of CUSTODY

Quote #:	ACZ#: 637682									
CLIENT INFORMATION		Mark 1.11								
Name to appear on Report and	Invoice		Carbon Copy: Report: Invoice:							
SEH, INC.		-								
2637 MIOPOINT DR.	Suite F	_								
FORT COLLINS, CO	FORT COLLINS, CO 80525 Attn: 5, MORGENSTERN Tel: 484-3611									
Attn: 5, MORGENSTERN	Tel: 484-36//	_	Attn:				Tel:			
Email: SMORGENSTERN	Email	<u>:</u>		<del></del> -						
PROJECT INFORMATION				ANALY	SES RE	QUEST	O (requ	ired; atta	ch (ist)	
Client Project name and/or PO#			, s	5		17.				
RICO/ST, LOUIS PO			of Containers	0 5	9 ~	5 %	7	2-		
AAR(OE 0105.00 Shipping Company:	9,00011		outa	28	35	7 6	(c. 1	3		1
Tracking #:		į	of C	178	201	2 3	HI	MERCURY		
SAMPLE IDENTIFICATION	DATE:TIME	Matrix	*	55	DISSOLVED	36	Fe II FE III	ME		
DR-10-5W	7-17-02 (4)	SW	5	X	A					
DR-19-5W	7-17-02 09:00	SW	5	X	A	B				
DR-27	7/17/02 10:45		6	X	A		X	X		
DR-1-SW	7/17/02 11:45		5	X	A	C	X	X		
SVS-20	7/17/02 13:45							X		
DA-25	7/17/02 14:45	JW						X		
SVJ-12	7/17/02 14:36							X		
DR-24	7/17/02 14:57	SW						X		
							]			
Matrix SW (Surface Water) · G Options SL (Sludge) · SO (Soil)		•	e Wate	r) - DW	(Drinkii	ng Wate	er)			
REMARKS		ony)							\$1.45 T	
A=Cd, Cu, Pb, Mn, N										
B=Cr, Fe	<i>J</i> •									ŀ
C= As, Cr, Fe		- نوويون								
RELINQUISHED BY:			Ž	RECEIV	ED BY		DA	TE:TIM	E	PAGE
STEVEN MORGENSTEAN	17/17/02	15:00	2	7			07/18	102 10	30	. 1
										Of
						]			]	

FRMQA021.01.00.03

White - Return with sample.

Yellow - Retain for your records.

TABLE 2
Analytical Procedures Summary

Parameter	Detection Limit	Method
Field Parameters		
pH (s.u.)		EPA 150.1
Temperature (°C)		Standard Method 2550
Conductivity (µmhos/cm)		EPA 120.1
Alkalinity (mg/L as CaCO ₃ )	5 mg/L	EPA 310.1
General Parameters		
Hardness (mg/L as CaCO ₃ )	1 mg/L	EPA 6010/130.2
Total Dissolved Solids (mg/L as TDS)	10 mg/L	EPA 160.1
Total Suspended Solids (mg/L-as TSS)	5 mg/L	EPA 160.2
Trace Metals		
Arsenic (µg/L as As)	0.5 μg/L	ICP-MS
Chromium (µg/L as Cr)	.05 μg/L	ICP-MS
Cadmium (µg/L as Cd)	3 μg/L	ICP
Copper (µg/L as Cu)	0.5 μg/L	ICP-MS
Cyanide (µg/L as CN)	5-10 μg/L	Low-level WAD
Iron (μg/L as Fe)	10 μg/L	ICP
Lead (µg/L as Pb)	0.1 μg/L	ICP-MS
Manganese (μg/L as Mn)	5 μg/ <b>L</b>	ICP
Mercury (μg/L as Hg)	0.000020 μg/L	EPA-1631
Nickel (μg/L as Ni)	10 μg/L	ICP
Selenium (µg/L as Se)	1.5µg/L	ICP-MS
Silver (μg/L as Ag)	0.05 μg/L	ICP-MS
Zinc (µg/L as Zn)	10 μg/L	ICP

### 5.0 Flow Measurement Methods

Discharge measurements will be conducted in accordance with the measurement procedures used for the Rico site remediation as well as USGS standard discharge measurement procedures. Flows will be measured by one of three methods (1) a Marsh-McBirney Model 2000 portable flow meter, (2) Parshall flume, or (3) volumetric procedure using a 5-gallon bucket.



Laboratories, Inc. 2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493	Report
Steven Morgenstern	August 15, 2002
SEH	
2637 Midpoint Drive Suite F Fort Collins, CO 80525	
Project: L37692	
Steven Morgenstern:	
Enclosed are the analytical results for sample(s) submitted to ACZ Labora This project has been assigned to ACZ's project number, L37692. Please inquiries.	
All analyses were performed according to ACZ's Quality Assurance Plan, relate only to the samples received under L37692. Each section of this repaperoved by the appropriate Laboratory Supervisor, or a qualified substitut	port has been reviewed and
Please assess the enclosed report only in its entirety. ACZ prohibits the rull, without the written approval of ACZ. ACZ is not responsible for the color partial report.	
All samples and sub-samples associated with this project will be disposed samples are determined to be hazardous, additional charges apply for disp \$10/sample). If you would like the samples to be held longer than ACZ's splease contact your Project Manager or Customer Service Representative costs. ACZ retains analytical reports for five years. Please notify your Projects.	posal (typically less than stated policy or to be returned, for further details and associated
If you have any questions, please contact your Project Manager or Custor	mer Service Representative.
Spe Banksus 15/Aug/02	
Sue Barkey, Project Manager, has reviewed and accepted this report in its entire	etu



2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Case Narrative

SEH

Project: L37692

August 15, 2002

#### Sample Receipt

ACZ Laboratories, Inc. (ACZ) received 10 samples from SEH on July 19, 2002. The samples were received in good condition. Upon receipt, the sample custodian removed the samples from the cooler, inspected the contents, and logged the samples into ACZ's computerized Laboratory Information Management System (LIMS). The samples were assigned ACZ LIMS project number L37692. The custodian verified the sample information entered into the computer against the chain of custody (COC) forms and sample bottle labels.

### **Holding Times**

All analyses were performed within EPA recommended holding times except for the following:

1. The Ferrous Iron samples were received with too little remaining time to analyze them within the hold time of 24 hours. However, they were analyzed on the day received, 07/19/02.

### Sample Analysis

These samples were analyzed for inorganic parameters. The individual methods are referenced on both, the ACZ invoice and the analytical reports. The following anomalies were identified during the analysis of these samples:

1. Total Recoverable Iron was not analyzed for on sample L37692-07. The proper sub-sample was not received (red dot bottle preserved with nitric acid).

REPAD.02.11.00.01

L37692: Page 2 of 16

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

## Inorganic Analytical Results

SEH

AARCOE 0105.00.00011

Project ID: Sample ID:

DR-2

ACZ ID: L37692-01

Date Sampled:

07/17/02 17:50

Date Received:

07/19/02

Sample Matrix:

Surface Water

Metals	Analysis

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Cadmium, dissolved	M200.7 ICP		U	mg/L	0.003	0.02	08/02/02 23:09	bf
Calcium, dissolved	M200.7 ICP	73.3		mg/L	0.2	1	08/02/02 23:09	bf
Chromium, total recoverable	M200.8 ICP-MS	0.0001	В	mg/L	0.0001	0.0005	08/02/02 7:47	lcj
Copper, dissolved	M200.8 ICP-MS	0.002	В	mg/L	0.001	0.005	08/02/02 5:00	lcj
Iron, total recoverable	M200.7 ICP	0.09		mg/L	0.01	0.05	08/10/02 15:20	bf
Lead, dissolved	M200.8 ICP-MS	0.0003	В	mg/L	0.0002	0.001	08/02/02 5:00	lcj
Magnesium, dissolved	M200.7 ICP	9.3		mg/L	0.2	1	08/02/02 23:09	bf
Manganese, dissolved	M200.7 ICP	0.307		mg/L	0.005	0.03	08/02/02 23:09	bf
Nickel, dissolved	M200.7 ICP		U	mg/L	0.01	0.05	08/02/02 23:09	bf
Selenium, dissolved	M200.8 ICP-MS		U	mg/L	0.003	0.02	08/02/02 5:00	lcj
Silver, dissolved	M200.8 ICP-MS		บ	mg/L	0.0001	0.0005	08/02/02 5:00	lcj
Zinc, dissolved	M200.7 ICP	0.02	В	mg/L	0.01	0.05	08/02/02 23:09	bf

### Metals Prep

Parameter	EPA Method	Result Qual	Units MDL	PQL Date	Analyst
Total Recoverable	e M200.2 ICP-MS			07/31/02 17:17	jb
Total Recoverable Digestion	e M200.2 ICP			07/31/02 12:31	dlm

AAGI CHGHH2IIA								
Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Cyanide, WAD	SM4500-CN I-Colorimetric w/ distillation	,	υ	mg/L	0.005	0.01	07/25/02 10:37	kb
Hardness as CaCO3	SM2340B - Calculation	221		mg/L	1	7	08/14/02 0:00	calc
Residue, Filterable (TDS) @180C	M160.1 - Gravimetric	240		mg/L	10	20	07/19/02 14:47	Isa
Residue, Non- Filterable (TSS) @105C	M160.2 - Gravimetric	10	В	mg/L	5	20	07/19/02 12:55	Isa

## **Inorganic Analytical** Results

SEH

ACZ ID: L37692-02

Project ID:

AARCOE 0105.00.00011

Date Sampled:

07/18/02 08:30

Sample ID:

**SVS-20** 

Date Received:

07/19/02

Sample Matrix:

Surface Water

Metals	Analy	vsís

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Cadmium, dissolved	M200.7 ICP	0.004	В	mg/L	0.003	0.02	08/02/02 23:25	bf
Calcium, dissolved	M200.7 ICP	119		mg/L	0.2	1	08/02/02 23:25	bf
Chromium, total recoverable	M200.8 ICP-MS		U	mg/L	0.0001	0.0005	08/02/02 7:52	lcj
Copper, dissolved	M200.8 ICP-MS	0.002	В	mg/L	0.001	0.005	08/02/02 5:04	lcj
Iron, total recoverable	M200.7 ICP	0.01	В	mg/L	0.01	0.05	08/10/02 20:21	bf
Lead, dissolved	M200.8 ICP-MS	0.0005	В	mg/L	0.0002	0.001	08/02/02 5:04	lcj
Magnesium, dissolved	M200.7 ICP	13.3		mg/L	0.2	1	08/02/02 23:25	bf
Manganese, dissolved	M200.7 ICP	0.012	В	mg/L	0.005	0.03	08/02/02 23:25	bf
Nickel, dissolved	M200.7 ICP		U	mg/L	0.01	0.05	08/02/02 23:25	bf
Selenium, dissolved	M200.8 ICP-MS		U	mg/L	0.003	0.02	08/02/02 5:04	lcj
Silver, dissolved	M200.8 ICP-MS		U	mg/L	0.0001	0.0005	08/02/02 5:04	lcj
Zinc, dissolved	M200.7 ICP	0.47		mg/L	0.01	0.05	08/02/02 23:25	bf

### Metals Prep

Parameter	EPA Method	Result Qual Units MDL PQL Date Ar	nalyst
Total Recoverable Digestion	M200.2 ICP-MS	07/31/02 17:30	jb
Total Recoverable Digestion	M200.2 ICP	07/31/02 9:57	dlm

wet Chemistry								
Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Cyanide, WAD	SM4500-CN I-Colorimetric w/ distillation		U	mg/L	0.005	0.01	07/25/02 10:37	kb
Hardness as CaCO3	SM2340B - Calculation	352		mg/L	1	7	08/14/02 0:00	calc
Residue, Filterable (TDS) @180C	M160.1 - Gravimetric	420		mg/L	10	20	07/19/02 14:50	Isa
Residue, Non- Filterable (TSS) @105C	M160.2 - Gravimetric		U	mg/L	5	20	07/19/02 12:59	Isa

2773 Downhill Drive Steamboat Springs, CO 80487(800) 334-5493

## Inorganic Analytical Results

SEH

Project ID:

AARCOE 0105.00.00011

Sample ID:

SVS-8

ACZ ID:

L37692-03

Date Sampled:

07/18/02 09:35

Date Received:

07/19/02

Sample Matrix:

Surface Water

Metals Analysis

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Cadmium, dissolved	M200.7 ICP	0.003	В	mg/L	0.003	0.02	08/02/02 23:29	bf
Calcium, dissolved	M200.7 ICP	107		mg/L	0.2	1	08/02/02 23:29	bf
Chromium, total recoverable	M200.8 ICP-MS	0.0001	В	mg/L	0.0001	0.0005	08/02/02 7:56	lcj
Copper, dissolved	M200.8 ICP-MS	0.002	В	mg/L	0.001	0.005	08/02/02 5:19	lcj
Iron, total recoverable	M200.7 ICP	0.09		mg/L	0.01	0.05	08/10/02 15:35	bf
Lead, dissolved	M200.8 ICP-MS		U	mg/L	0.0002	0.001	08/02/02 5:19	lcj
Magnesium, dissolved	M200.7 ICP	15.0		mg/L	0.2	1	08/02/02 23:29	bf
Manganese, dissolved	M200.7 ICP	0.648		mg/L	0.005	0.03	08/02/02 23:29	bf
Nickel, dissolved	M200.7 ICP		U	mg/L	0.01	0.05	08/02/02 23:29	bf
Selenium, dissolved	M200.8 ICP-MS		U	mg/L	0.003	0.02	08/02/02 5:19	lcj
Silver, dissolved	M200.8 ICP-MS		U	mg/L	0.0001	0.0005	08/02/02 5:19	lcj
Zinc, dissolved	M200.7 ICP	0.94		mg/L	0.01	0.05	08/02/02 23:29	bf

Metals Prep

Parameter	EPA Method	Result Qual	Units MDL PC	Date	Analyst
Total Recoverable Digestion	M200.2 ICP-MS			07/31/02 17:43	jb
Total Recoverable Digestion	M200.2 ICP			07/31/02 13:28	dlm

Wet Chemistry		_						
Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Cyanide, WAD	SM4500-CN I-Colorimetric w/ distillation		U	mg/L	0.005	0.01	07/25/02 10:38	kb
Hardness as CaCO3	SM2340B - Calculation	329		mg/L	1	7	08/14/02 0:00	calc
Residue, Filterable (TDS) @180C	M160.1 - Gravimetric	370		mg/L	10	20	07/19/02 14:57	Isa
Residue, Non- Filterable (TSS) @105C	M160.2 - Gravimetric	6	В	mg/L	5	20	07/20/02 17:05	wfg

2773 Downhill Drive Steamboat Springs, CO 80487(800) 334-5493

### Inorganic Analytical Results

SEH

Project ID:

AARCOE 0105.00.00011

Sample ID:

**SVS-12** 

ACZ ID:

L37692-04

Date Sampled:

07/18/02 11:00

Date Received:

07/19/02

Sample Matrix:

Surface Water

Metals Analysis

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Arsenic, total recoverable	M200.8 ICP-MS	8000.0	В	mg/L	0.0005	0.003	08/02/02 8:01	lcj
Cadmium, dissolved	M200.7 ICP	0.004	В	mg/L	0.003	0.02	08/06/02 21:24	kdw
Calcium, dissolved	M200.7 ICP	232		mg/L	0.2	1	08/02/02 23:41	bf
Chromium, total recoverable	M200.8 ICP-MS		U	mg/L	0.0001	0.0005	08/02/02 8:01	lcj
Copper, dissolved	M200.8 ICP-MS	0.002	В	mg/L	0.001	0.005	08/02/02 5:33	lcj
Iron, Ferric	Calculation (TR Fe - Ferrous Fe)	2.7		mg/L	0.1	0.1	08/14/02 0:00	calc
Iron, total recoverable	M200.7 ICP	5.78		mg/L	0.01	0.05	08/07/02 20:51	bf
Lead, dissolved	M200.8 ICP-MS	0.0017		mg/L	0.0002	0.001	08/02/02 5:33	lcj
Magnesium, dissolved	M200.7 ICP	41.5		mg/L	0.2	1	08/02/02 23:41	bf
Manganese, dissolved	M200.7 ICP	7.200		mg/L	0.005	0.03	08/02/02 23:41	bf
Nickel, dissolved	M200.7 ICP	0.02	В	mg/L	0.01	0.05	08/06/02 21:24	kdw
Selenium, dissolved	M200.8 ICP-MS		U	mg/L	0.003	0.02	08/02/02 5:33	lcj
Silver, dissolved	M200.8 ICP-MS		U	mg/L	0.0001	0.0005	08/02/02 5:33	lcj
Zinc, dissolved	M200.7 ICP	6.11		mg/L	0.01	0.05	08/02/02 23:41	bf

Metals Prep

Parameter	EPA Method Result Q	ual Units MDL	PQL Date	Analyst
Total Recoverable Digestion	M200.2 ICP-MS		07/31/02 17:57	jb
Total Recoverable	M200.2 ICP		07/31/02 13:48	dlm

Digestion

Wet Chemistry								
Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Acidity as CaCO3	SM2310B - Titration		U	mg/L	2	10	07/22/02 13:11	ecr
Cyanide, WAD	SM4500-CN I-Colorimetric w/ distillation		U	mg/L	0.005	0.01	07/25/02 10:40	kb
Hardness as CaCO3	SM2340B - Calculation	751		mg/L	1	7	08/14/02 0:00	calc
Iron, Ferrous	SM 3500 Fe-D	3.0	H	mg/L	0.1	0.5	07/19/02 19:29	wfg
Residue, Filterable (TDS) @180C	M160.1 - Gravimetric	1010		mg/L	10	20	07/22/02 9:45	Isa
Residue, Non- Filterable (TSS) @105C	M160.2 - Gravimetric	8	В	mg/L	5	20	07/20/02 17:08	wfg
Sulfate	M375.3 - Gravimetric	560		mg/L	10	20	07/19/02 16:42	ey

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

### Inorganic Analytical Results

SEH

ACZ ID: L37692-05

Project ID:

AARCOE 0105.00.00011

07/18/02 10:45

Sample ID:

**DR-24** 

Date Received: 07/19/02

Date Sampled:

Sample Matrix: Surface Water

INICIAIS MIAINSI	etals Analys	sis
------------------	--------------	-----

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Arsenic, total recoverable	M200.8 ICP-MS	0.0008	В	mg/L	0.0005	0.003	08/02/02 8:05	lcj
Cadmium, dissolved	M200.7 ICP		U	mg/L	0.003	0.02	08/02/02 23:45	bf
Calcium, dissolved	M200.7 ICP	239		mg/L	0.2	1	08/02/02 23:45	bf
Chromium, total recoverable	M200.8 ICP-MS		υ	mg/L	0.0001	0.0005	08/02/02 8:05	lcj
Copper, dissolved	M200.8 ICP-MS	0.001	В	mg/L	0.001	0.005	08/03/02 23:22	lcj
fron, Ferric	Calculation (TR Fe - Ferrous Fe)	2.3		mg/L	0.1	0.1	08/14/02 0:00	calc
Iron, total recoverable	M200.7 ICP	5.42		mg/L	0.01	0.05	08/07/02 21:04	bf
Lead, dissolved	M200.8 ICP-MS	0.0011		mg/L	0.0002	0.001	08/03/02 23:22	lcj
Magnesium, dissolved	M200.7 ICP	43.3		mg/L	0.2	1	08/02/02 23:45	bf
Manganese, dissolved	M200.7 ICP	7.520		mg/L	0.005	0.03	08/02/02 23:45	bf
Nickel, dissolved	M200.7 ICP		U	mg/L	0.01	0.05	08/02/02 23:45	bf
Selenium, dissolved	M200.8 ICP-MS		U	mg/L	0.003	0.02	08/03/02 23:22	lcj
Silver, dissolved	M200.8 ICP-MS		U	mg/L	0.0001	0.0005	08/03/02 23:22	lcj
Zinc, dissolved	M200.7 ICP	6.22		mg/L	0.01	0.05	08/02/02 23:45	bf

### Metals Prep

Parameter	EPA Method	Result	Qual U	nits MDL	PQL	Date	Analyst
Total Recoverable	M200.2 ICP				07/3	31/02 14:07	dlm
Digestion Total Recoverable Digestion	M200.2 ICP-MS				07/3	11/02 18:10	jb

#### Wat Chamistry

wet Chemistry								
Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Acidity as CaCO3	SM2310B - Titration		U	mg/L	2	10	07/22/02 14:07	есг
Cyanide, WAD	SM4500-CN I-Colorimetric w/ distillation		U	mg/L	0.005	0.01	07/25/02 10:41	kb
Hardness as CaCO3	SM2340B - Calculation	775		mg/L	1	7	08/14/02 0:00	calc
Iron, Ferrous	SM 3500 Fe-D	3.1	Н	mg/L	0.1	0.5	07/19/02 19:36	wfg
Residue, Filterable (TDS) @180C	M160.1 - Gravimetric	1020		mg/L	10	20	07/22/02 9:46	isa
Residue, Non- Filterable (TSS) @105C	M160.2 - Gravimetric	10	В	mg/L	5	20	07/20/02 17:10	wfg
Sulfate	M375.3 - Gravimetric	560		mg/L	10	20	07/19/02 16:46	ey

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

## Inorganic Analytical Results

SEH

Project ID: AARCOE 0105.00.00011

Sample ID:

**DR-25** 

ACZ ID: L37692-06

Date Sampled:

07/18/02 11:30

Date Received:

07/19/02

Sample Matrix:

Surface Water

Metals Analysis

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Arsenic, total	M200.8 ICP-MS		U	mg/L	0.0005	0.003	08/02/02 8:10	lcj
recoverable								
Cadmium, dissolved	M200.7 ICP		U	mg/L	0.003	0.02	08/02/02 23:49	bf
Calcium, dissolved	M200.7 ICP		U	mg/L	0.2	1	08/02/02 23:49	bf
Chromium, total recoverable	M200.8 ICP-MS	0.0009		mg/L	0.0001	0.0005	08/02/02 8:10	lcj
Copper, dissolved	M200.8 ICP-MS		U	mg/L	0.001	0.005	08/03/02 23:27	lcj
Iron, Ferric	Calculation (TR Fe - Ferrous Fe)		U	mg/L	0.01	0.01	08/14/02 0:00	calc
Iron, total recoverable	M200.7 ICP		U	mg/L	0.01	0.05	08/10/02 15:38	bf
Lead, dissolved	M200.8 ICP-MS		U	mg/L	0.0002	0.001	08/03/02 23:27	lcj
Magnesium, dissolved	M200.7 ICP		U	mg/L	0.2	1	08/02/02 23:49	bf
Manganese, dissolved	M200.7 ICP		U	mg/L	0.005	0.03	08/02/02 23:49	bf
Nickel, dissolved	M200.7 ICP		U	mg/L	0.01	0.05	08/02/02 23:49	bf
Selenium, dissolved	M200.8 ICP-MS		U	mg/L	0.003	0.02	08/03/02 23:27	lcj
Silver, dissolved	M200.8 ICP-MS		U	mg/L	0.0001	0.0005	08/03/02 23:27	lcj
Zinc, dissolved	M200.7 ICP	0.01	В	mg/L	0.01	0.05	08/02/02 23:49	bf

Metals Prep

Parameter	EPA Method Result Qual Units MDL	PQL Date	Analyst
Total Recoverable Digestion	M200.2 ICP-MS	07/31/02 18:24	jb
Total Recoverable Digestion	M200.2 ICP	07/31/02 14:26	dlm

Wet Chemistry								
Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Acidity as CaCO3	SM2310B - Titration	10	В	mg/L	2	10	07/22/02 14:35	ecr
Cyanide, WAD	SM4500-CN I-Colorimetric w/ distillation		U	mg/L	0.005	0.01	07/25/02 10:42	kb
Hardness as CaCO3	SM2340B - Calculation	n/a		mg/L	1	7	08/14/02 0:00	calc
Iron, Ferrous	SM 3500 Fe-D		UΗ	mg/L	0.01	0.05	07/19/02 19:43	wfg
Residue, Filterable (TDS) @180C	M160.1 - Gravimetric		U	mg/L	10	20	07/22/02 9:48	Isa
Residue, Non- Filterable (TSS) @105C	M160.2 - Gravimetric		U	mg/L	5	20	07/20/02 17:13	wfg
Sulfate	M375.3 - Gravimetric		U	mg/L	10	20	07/19/02 16:50	ey



Project ID:

SEH

AARCOE 0105.00.00011

Sample ID:

DR-7-SW

ACZ ID:

L37692-07

Date Sampled:

07/18/02 09:25

Date Received:

07/19/02

Sample Matrix:

Surface Water

Wet Chemistry

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	- Analyst
Iron, Ferrous	SM 3500 Fe-D	8.2	Н	mg/L	0.1	0.5	07/19/02 19:50	) wfg
Lab Filtration	SM 3030 B						07/19/02 15:00	) Isa
Lab Filtration & Acidification	SM 3030 B						07/23/02 23:07	' ey

## Inorganic Analytical Results

SEH

Project ID:

AARCOE 0105.00.00011

Sample ID:

**SVS-22** 

ACZ ID: L37692-08

Date Sampled:

07/18/02 12:50

Date Received:

07/19/02

Sample Matrix:

Surface Water

is

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Cadmium, dissolved	M200.7 ICP	0.004	В	mg/L	0.003	0.02	08/02/02 23:53	bf
Calcium, dissolved	M200.7 ICP	49.4		mg/L	0.2	1	08/02/02 23:53	. bf
Chromium, total recoverable	M200.8 ICP-MS		U	mg/L	0.0001	0.0005	08/02/02 8:15	lcj
Copper, dissolved	M200.8 ICP-MS	0.002	В	mg/L	0.001	0.005	08/03/02 23:43	lcj
Iron, total recoverable	M200.7 ICP		U	mg/L	0.01	0.05	08/10/02 15:42	bf
Lead, dissolved	M200.8 ICP-MS	0.0005	В	mg/L	0.0002	0.001	08/03/02 23:43	lcj
Magnesium, dissolved	M200.7 ICP	5.0		mg/L	0.2	1	08/02/02 23:53	bf
Manganese, dissolved	M200.7 ICP		U	mg/L	0.005	0.03	08/02/02 23:53	bf
Nickel, dissolved	M200.7 ICP		U	mg/L	0.01	0.05	08/02/02 23:53	bf
Selenium, dissolved	M200.8 ICP-MS		U	mg/L	0.003	0.02	08/03/02 23:43	lcj
Silver, dissolved	M200.8 ICP-MS		U	mg/L	0.0001	0.0005	08/03/02 23:43	lcj
Zinc, dissolved	M200.7 ICP	0.42		mg/L	0.01	0.05	08/02/02 23:53	bf

### Metals Prep

Parameter	EPA Method Result	Qual Units	MDL	PQL	Date	Analyst
Total Recoverable Digestion	M200.2 ICP			07/3	1/02 14:45	dlm
Total Recoverable	M200,2 ICP-MS			07/3	1/02 18:37	jb

wet Chemishy								
Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Cyanide, WAD	SM4500-CN I-Colorimetric w/ distillation		U	mg/L	0.005	0.01	07/25/02 10:43	kb
Hardness as CaCO3	SM2340B - Calculation	144		mg/L	1	7	08/14/02 0:00	calc
Residue, Filterable (TDS) @180C	M160.1 - Gravimetric	180		mg/L	10	20	07/19/02 15:00	Isa
Residue, Non- Filterable (TSS) @105C	M160.2 - Gravimetric		U	mg/L	5	20	07/20/02 17:16	wfg

## Inorganic Analytical Results

SEH

Project ID:

AARCOE 0105.00.00011

Sample ID:

DR-7

ACZ ID:

L37692-09

Date Sampled:

07/18/02 14:10

Date Received:

07/19/02

Sample Matrix:

Surface Water

Metals Analysis

Parameter	EPA Method	Result	Qual	Units	MDL PQL	Date	Analyst
Mercury, total	M1631, Atomic Fluorescence		U	ug/L	0.0002 0.0005	08/06/02 14:53	lcj

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

# Inorganic Analytical Results

SEH

Project ID:

AARCOE 0105.00.00011

Sample ID:

DR-3

ACZ ID:

L37692-10

Date Sampled:

07/18/02 14:20

Date Received:

07/19/02

Sample Matrix:

Surface Water

Metals Analysis

Parameter EPA Method Result Qual Units MDL PQL Date Analys

Mercury, total M1631, Atomic Fluorescence U ug/L 0.0002 0.0005 08/06/02 15:06 lg

REPIN.01.11.00.01

L37692: Page 12 of 16

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

ort Header	Explanations
Batch	A distinct set of samples analyzed at a specific time
Found	Value of the QC Type of interest
Limit	Upper limit for RPD, in %.
Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)
MDL	Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.
PCN/SCN	A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis
PQL	Practical Quantitation Limit, typically 5 times the MDL.
QC	True Value of the Control Sample or the amount added to the Spike
Rec	Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)
RPD	Relative Percent Difference, calculation used for Duplicate QC Types
Upper	Upper Recovery Limit, in % (except for LCSS, mg/Kg)
Sample	Value of the Sample of interest

do gambie i	lypes		
AS	Analytical Spike (Post Digestion)	LFM	Laboratory Fortified Matrix
ASD	Analytical Spike (Post Digestion) Duplicate	LFMD	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
LCSS	Laboratory Control Sample - Soil	MS/MSD	Matrix Spike/Matrix Spike Duplicate
LCSW	Laboratory Control Sample - Water	PBS	Prep Blank - Soil
LFB	Laboratory Fortified Blank	PBW	Prep Blank - Water

QC Sam	nia Tu	ma Ev	miana	itione
UO Saili	JIC II Y	he Ev	Pigire	เมษาเจ

Blanks Verifies that there is no or minimal contamination in the prep method procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method.

Spikes/Fortified Matrix Determines sample matrix interferences, if any.

### ACZ Qualifiers (Qual)

В	Analyte concentration detected at a value between MDL and PQL.
---	----------------------------------------------------------------

H Analysis exceeded method hold time. pH is a field test with an immediate hold time.

R Poor spike recovery accepted because the other spike in the set fell within the given limits.

T High Relative Percent Difference (RPD) accepted because sample concentrations are less than 10x the MDL.

U Analyte was analyzed for but not detected at the indicated MDL

V High blank data accepted because sample concentration is 10 times higher than blank concentration

W Poor recovery for Silver quality control is accepted because Silver often precipitates with Chloride.

X Quality control sample is out of control.

Z Poor spike recovery is accepted because sample concentration is four times greater than spike concentration.

### Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

### Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Sample Receipt

AARCOE0105.00.00011

ACZ Project ID:

L37692 7/19/02

Date Received: Received By:

TONYA

		nf		

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Are the trip blanks (VOA and/or Cyanide) present?
- 12) Are samples requiring no headspace, headspace free?
- 13) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		1
1		
		1
1		
<b>√</b>		
4		
<b>√</b>		
1		
1		
1		
	1	
		1
		1

### Exceptions: If you answered no to any of the above questions, please describe

N/A

### Contact (For any discrepancies, the client must be contacted)

N/A

### Shipping Containers

Cooler Id		Temp (°C)	Rad (µR/hr)
ACZ		11.9	12
			J
<del></del>	<del> </del>		

### Notes

Sample Receipt

AARCOE0105.00.00011

ACZ Project ID:

L37692

Date Received:

7/19/02

Received By:

TONYA

SAMPLE	CLIENT ID	R < 2	G < 2	Y<2	YG< 2	B < 2	BG< 2	0 < 2	T >12	P >12	N/A	RAD
37692-01	DR-2	Υ	Υ							Υ		
37692-02	SVS-20	Υ	Υ							Υ		
37692-03	SVS-8	Υ	Υ							Υ		
37692-04	SVS-12	Υ	Υ							Υ		
37692-05	DR-24	Υ	Υ							Υ		
37692-06	DR-25	Υ	Υ							Υ		
37692-07	DR-7-SW										0	
37692-08	SVS-22	Υ	Υ							Υ		
L37692-09	DR-7	Υ										
L37692-10	DR-3	Υ										

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

CHAIN of CUSTODY

Quote #:		<u></u>	ACZ	.#: <i>(</i>	37	<i>69</i> Z			_	
CLIENT INFORMATION								n eriet.	V. 4.	1 Y
Name to appear on Report and	Invoice		Carbo	on Cop	y: I	Report:	:	_ lr	nvoice:	
SEH, INC.		-		<del></del>						
2637 MIDPOINT	OR, Ste F	_			·					
FORT COLLINS, CO		-								
Attn: S, MORGENSTERI			Attn:			<del></del>	Tel:			
Email: SMORGENSTERN	DSEHINC, CO	<u>n</u>	Email	l <u>:</u>						
	ang kalèng di sadayah			ANALY	SES RE	QUEST	ED (req	uired; att	ach list)	
Client Project name and/or PO#  RICO/ST LOUIS P	e ONOS		5	3.		707.AL	Ħ	İ		
AARCOE 0105,00.			of Containers		85	7 4	(a)	12	8	
Shipping Company: UPS			ပြီ	23	77.	METALS-	1	SVLFAT ACIDITY	MERCUR	
Tracking #:			ō	N3	55	12 3	Ħ	10	8	
SAMPLE IDENTIFICATION	DATE:TIME	Matrix		5 3	200	7 8 8	Fe II, Fe III	SVLFATE, ACIDITY	Mè	
DR-2	7/17/02 17:50	SW	5	X	A	B				
SVS-20	7/18/02 08130	SW	5	X	A	B				
SVS-8	7/18/02 09:35	SW	5	X	A	$\mathcal{B}$				
SVS-12	7/18/02 11:00	SW	.5	X	A	C	X	×		
DR-24	7/18/02 10:45	SW	5	X	A	C	×	×		
DR-25	7/18/02 11:30	SW	5	X	A	C	X	X		
DR-7-SW	7/8/02 09:25	SW					X			
SNS-22	7/18/02 12:50	SW.	5	×	A	$\mathcal{B}$				·
DR-7	7/18/02 14:10	SW			,				X	
DR-3	1/18/02 14:20	SW	1						X	
Matrix SW (Surface Water) · G Options SL (Sludge) · SO (Soil)	•	-	e Wate	r) · DW	(Drinki	ng Wate	er)			
REMARKS	OE (Oil) Other (Open	City)				4,11	: With a fi			
A=Cd, Cu, Pb, Mn, Ni,	Se, Ag, ZA DO	9-7-51	V -> 1	FILT	ER /	NE	4B;	WAS	NOT	
B=Cr, Fe	FI	LTERE	BIN	FIEL	D					
C= As, Cr, Fe										
RELINQUISHED BY:	DATE:TI	ME		RECEIV	ED BY	:	D	ATE:TIN	îΕ	PAGE
STEVEN MORGENSTER	V 7/18/02	14:40	2	2			07/1	102	1130	
	//						/ .	/		Of

Analytical Report

August 14, 2002

Steven Morgenstern

SEH

2637 Midpoint Drive Suite F

Fort Collins, CO 80525

Project: L37693

Steven Morgenstern:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on July 19, 2002. This project has been assigned to ACZ's project number, L37693. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan, version 9.0. The enclosed results relate only to the samples received under L37693. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Please assess the enclosed report only in its entirety. ACZ prohibits the reproduction of this report, except in full, without the written approval of ACZ. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after September 14, 2002. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years. Please notify your Project Manager if you have other needs.

If you have any questions, please contact your Project Manager or Customer Service Representative.

Kalph K Pouleur

14/Aug/02

Ralph V. Poulsen, President, has reviewed and accepted this report in its entirety.

2773 Downhill Drive Steamboat Springs, CO 80487(800) 334-5493

## **Inorganic Analytical** Results

SEH

ACZ ID: L37693-01

Project ID:

AARCO E0105.00.00011

Date Sampled:

07/16/02 08:40

Sample ID:

DR-7-SW

Date Received:

07/19/02

Sample Matrix:

Surface Water

Metals Analysis

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Arsenic, total recoverable	M200.8 ICP-MS	0.0051		mg/L	0.0005	0.003	07/27/02 20:28	lcj
Cadmium, dissolved	M200.7 ICP		U	mg/L	0.003	0.02	07/29/02 20:40	ct
Calcium, dissolved	M200.7 ICP	333		mg/L	0.2	1	07/29/02 20:40	ct
Chromium, total recoverable	M200.8 ICP-MS	0.0015		mg/L	0.0001	0.0005	07/31/02 3:14	lcj
Copper, dissolved	M200.8 ICP-MS	0.002	В	mg/L	0.001	0.005	08/01/02 2:13	lcj
Iron, total recoverable	M200.7 ICP	14.70		mg/L	0.01	0.05	08/08/02 1:25	bf
Lead, dissolved	M200.8 ICP-MS	0.0013		mg/L	0.0002	0.001	07/30/02 20:45	jb
Magnesium, dissolved	M200.7 ICP	50.1		mg/L	0.2	1	07/29/02 20:40	ct
Manganese, dissolved	M200.7 ICP	2.690		mg/L	0.005	0.03	07/29/02 20:40	ct
Mercury, total	M1631, Atomic Fluorescence		υ	ug/L	0.0002	0.0005	08/06/02 15:15	lcj
Nickel, dissolved	M200.7 ICP		U	mg/L	0.01	0.05	07/29/02 20:40	ct
Selenium, dissolved	M200.8 ICP-MS		U	mg/L	0.003	0.02	07/30/02 20:45	jb
Silver, dissolved	M200.8 ICP-MS		U	mg/L	0.0001	0.0005	07/30/02 20:45	ĵb
Zinc, dissolved	M200.7 ICP	0.88		mg/L	0.01	0.05	07/29/02 20:40	ct

Metals Prep

Parameter	EPA Method	Result	Qual	Units	MDL PQL	Date	Analyst
Total Recoverable Digestion	M200.2 ICP-MS	-			•	07/26/02 21:15	jb
Total Recoverable Digestion	M200.2 ICP					07/29/02 11:14	dlm

Wet Chemistry

Trot Otlettilady								
Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Acidity as CaCO3	SM2310B - Titration		U	mg/L	2	10	07/22/02 15:03	есг
Cyanide, WAD	SM4500-CN I-Colorimetric w/ distillation		U	mg/L	0.005	0.01	07/25/02 10:43	kb
Hardness as CaCO3	SM2340B - Calculation	1040		mg/L	1	7	08/07/02 0:00	calc
Residue, Filterable (TDS) @180C	M160.1 - Gravimetric	1240		mg/L	10	20	07/19/02 15:04	Isa
Residue, Non- Filterable (TSS) @105C	M160.2 - Gravimetric	30		mg/L	5	20	07/19/02 13:03	Isa
Sulfate	M375.3 - Gravimetric	300		mg/L	10	20	07/19/02 16:54	еу

Note: The Total Recoverable Iron value is estimated due to matrix interferences.

## Inorganic Analytical Results

SEH

Project ID:

AARCO E0105.00.00011

Sample ID:

DR-7

ACZ ID: L37693-02

Date Sampled:

07/16/02 12:10

Date Received:

07/19/02

Sample Matrix:

Surface Water

Metals Analysis

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Cadmium, dissolved	M200.7 ICP		U	mg/L	0.003	0.02	08/01/02 23:16	bf
Calcium, dissolved	M200.7 ICP	77.4		mg/L	0.2	1	08/01/02 23:16	bf
Chromium, total recoverable	M200.8 ICP-MS	0.0017		mg/L	0.0001	0.0005	07/31/02 3:19	lcj
Copper, dissolved	M200.8 ICP-MS	0.001	В	mg/L	0.001	0.005	08/01/02 2:27	lcj
Iron, total recoverable	M200.7 ICP	0.17		mg/L	0.01	0.05	08/01/02 6:42	bf
Lead, dissolved	M200.8 ICP-MS		U	mg/L	0.0002	0.001	07/30/02 20:50	jb
Magnesium, dissolved	M200.7 ICP	11.7		mg/L	0.2	1	08/06/02 21:29	kdw
Manganese, dissolved	M200.7 ICP	0.316		mg/L	0.005	0.03	08/06/02 21:29	kdw
Mercury, total	M1631, Atomic Fluorescence		U	ug/L	0.0002	0.0005	08/06/02 15:20	icj
Nickel, dissolved	M200.7 ICP		U	mg/L	0.01	0.05	08/06/02 21:29	kdw
Selenium, dissolved	M200.8 ICP-MS		U	mg/L	0.003	0.02	07/30/02 20:50	jb
Silver, dissolved	M200.8 ICP-MS		U	mg/L	0.0001	0.0005	07/30/02 20:50	jb
Zinc, dissolved	M200.7 ICP	0.02	В	mg/L	0.01	0.05	08/01/02 23:16	bf

Metals Prep

Parameter	EPA Method	Result Qual Units	MDL PQL Date	Analyst
Total Recoverable Digestion	M200.2 ICP-MS		07/26/02 21:30	jb
Total Recoverable	M200.2 ICP		07/29/02 12:12	dlm

Wet Chemistry

Digestion

wet Chemistry								
Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Cyanide, WAD	SM4500-CN I-Colorimetric w/ distillation		U	mg/L	0.005	0.01	07/25/02 10:44	kb
Hardness as CaCO3	SM2340B - Calculation	242		mg/L	1	7	08/07/02 0:00	calc
Residue, Filterable (TDS) @180C	M160.1 - Gravimetric	320		mg/L	10	20	07/19/02 15:07	Isa
Residue, Non- Filterable (TSS) @105C	M160.2 - Gravimetric	6	В	mg/L	5	20	07/19/02 13:07	Isa

REPIN.01.11.00.01

L37693: Page 3 of 11

### **Inorganic Analytical** Results

SEH

Project ID:

AARCO E0105.00.00011

Sample ID:

DR-6

ACZ ID:

L37693-03

Date Sampled:

07/16/02 13:30

Date Received:

07/19/02

Sample Matrix:

Surface Water

M	le	lal	s /	'n	aly:	SİS
_	_		_	_		_

Parameter	EPA Method	Result	Qual	Units	MDL P	PQL	Date	Analyst
Arsenic, total recoverable	M200.8 ICP-MS		U	mg/L	0.0005 0.	.003	07/27/02 20:37	lcj
Cadmium, dissolved	M200.7 ICP		U	mg/L	0.003 0	.02	08/01/02 23:20	bf
Cadmium, potentially dissolved	M200.7 ICP	0.015	В	mg/L	0.006 0	.03	08/07/02 20:00	bf
Calcium, dissolved	M200,7 ICP	314		mg/L	0.2	1	08/01/02 23:20	bf
Chromium, total recoverable	M200.8 ICP-MS	0.0016		mg/L	0.0001 0.0	0005	07/31/02 3:23	lcj
Copper, dissolved	M200.8 ICP-MS	0.003	В	mg/L	0.001 0.	005	08/02/02 5:38	lcj
Copper, potentially dissolved	M200.8 ICP-MS	0.0028	В	mg/L	0.0005 0.	.003	07/26/02 0:38	Icj
Iron, dissolved	M200.7 ICP	0.03	В	mg/L	0.01 0.	.05	08/12/02 11:40	ct
Iron, potentially dissolved	M200.7 ICP	0.49		mg/L	0.02	0.1	08/07/02 20:00	bf
Iron, total recoverable	M200.7 ICP	0.39		mg/L	0.01 0	.05	07/30/02 16:01	bf
Lead, dissolved	M200.8 ICP-MS		U	mg/L	0.0002 0.	001	07/30/02 20:54	jb
Lead, potentially dissolved	M200.8 ICP-MS	0.0007	В	mg/L	0.0005 0.0	003	07/26/02 18:55	jb
Magnesium, dissolved	M200.7 ICP	34.0		mg/L	0.2	1	08/06/02 21:34	kdw
Manganese, dissolved	M200.7 ICP	0.505		mg/L	0.005 0.	.03	08/06/02 21:34	kdw
Manganese, potentially dissolved	M200.7 ICP	0.506		mg/L	0.005 0	.03	08/06/02 15:12	bf
Nickel, dissolved	M200.7 ICP		U	mg/L	0.01 0	.05	08/06/02 21:34	kdw
Nickel, potentially dissolved	M200.7 ICP	80.0	В	mg/L	0.02	0.1	08/07/02 20:00	bf
Selenium, dissolved	M200.8 ICP-MS		U	mg/L	0.003 0.	.02	07/30/02 20:54	jb
Selenium, potentially dissolved	M200.8 ICP-MS		U	mg/L	0.008 0.	.04	07/26/02 18:55	jb
Silver, dissolved	M200.8 ICP-MS		U	mg/L	0.0001 0.0	0005	07/30/02 20:54	jb
Silver, potentially dissolved	M200.8 ICP-MS		U	mg/L	0.0003 0.0	001	07/26/02 18:55	jb
Zinc, dissolved	M200.7 ICP	0.41		mg/L	0.01 0.	.05	08/01/02 23:20	bf
Zinc, potentially dissolved	M200.7 ICP	0.45		mg/L	0.01 0.	.05	08/06/02 15:12	bf

Metals Prep

Parameter	EPA Method Result Qual Units MDL	PQL Date	Analyst
Acidify and filter (PD)	Potentially dissolved (CO WQCC)	07/25/02 3:27	ct
Total Recoverable Digestion	M200.2 ICP-MS	07/26/02 21:45	jb
Total Recoverable Digestion	M200.2 ICP	07/29/02 12:31	dlm

### Inorganic Analytical Results

**SEH** 

ACZ ID: L37693-03

Project ID:

AARCO E0105.00.00011

Date Sampled:

07/16/02 13:30

Sample ID:

DR-6

Date Received:

07/19/02

Sample Matrix:

Surface Water

Wet Chemistry

Trot Orientada y								
Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Cyanide, WAD	SM4500-CN I-Colorimetric w/ distillation		U	mg/L	0.005	0.01	07/25/02 10:45	kb
Hardness as CaCO3	SM2340B - Calculation	925		mg/L	1	7	08/07/02 0:00	calc
Residue, Filterable (TDS) @180C	M160.1 - Gravimetric	1350		mg/L	10	20	07/19/02 15:10	Isa
Residue, Non- Filterable (TSS) @105C	M160.2 - Gravimetric	16	В	mg/L	5	20	07/19/02 13:11	lsa

Note: The Dissolved Iron value is estimated due to matrix interferences.

### **Inorganic Analytical** Results

SEH

Project ID:

AARCO E0105.00.00011

Sample ID:

DR-3

ACZ ID:

L37693-04

Date Sampled:

07/16/02 14:20

Date Received:

07/19/02

Sample Matrix:

Surface Water

1	Иe	tal	s/	٩n	al١	ys	į

Parameter	EPA Method	Result	Qual	Units	MDL PQL	Date	Analyst
Arsenic, total recoverable	M200.8 ICP-MS	0.0017	В	mg/L	0.0005 0.003	07/27/02 20:42	lcj
Cadmium, dissolved	M200.7 ICP	0.013	В	mg/L	0.003 0.02	08/01/02 23:24	bf
Cadmium, total recoverable	M200.7 ICP	0.018	В	mg/L	0.003 0.02	08/08/02 22:56	bf
Calcium, dissolved	M200.7 ICP	259		mg/L	0.2 1	08/01/02 23:24	bf
Chromium, total recoverable	M200.8 ICP-MS	0.0098		mg/L	0.0005 0.003	07/31/02 3:28	lcj
Copper, dissolved	M200.8 ICP-MS	0.020		mg/L	0.003 0.01	08/01/02 2:36	lcj
Copper, total recoverable	M200.8 ICP-MS	0.25		mg/L	0.01 0.05	08/02/02 7:09	lcj
Iron, dissolved	M200.7 ICP	2.63		mg/L	0.01 0.05	08/12/02 11:43	ct
Iron, total recoverable	M200.7 ICP	13.90		mg/L	0.01 0.05	08/07/02 21:16	bf
Lead, dissolved	M200.8 ICP-MS	0.0167		mg/L	0.0002 0.001	07/30/02 20:59	jb
Lead, potentially dissolved	M200.8 ICP-MS	0.0160		mg/L	0.0002 0.001	08/07/02 1:06	lcj
Magnesium, dissolved	M200.7 ICP	23.1		mg/L	0.2 1	08/06/02 21:38	kdw
Manganese, dissolved	M200.7 ICP	2.050		mg/L	0.005 0.03	08/06/02 21:38	kdw
Manganese, total recoverable	M200.7 ICP	2.160		mg/L	0.005 0.03	08/07/02 21:16	bf
Mercury, total	M1631, Atomic Fluorescence		U	ug/L	0.0002 0.0005	08/06/02 15:24	lcj
Nickel, dissolved	M200.7 ICP		U	mg/L	0.01 0.05	08/06/02 21:38	kdw
Nickel, potentially dissolved	M200.7 ICP		U	mg/L	0.01 0.05	08/10/02 11:36	bf
Selenium, dissolved	M200.8 ICP-MS		U	mg/L	0.003 0.02	07/30/02 20:59	jb
Selenium, potentially dissolved	M200.8 ICP-MS		U	mg/L	0.002 0.008	08/06/02 21:24	jb
Silver, dissolved	M200.8 ICP-MS		U	mg/L	0.0001 0.0005	07/30/02 20:59	jb
Silver, potentially dissolved	M200.8 ICP-MS	0.00010	В	mg/L	5E-05 0.0003	08/06/02 21:24	jb
Zinc, dissolved	M200.7 ICP	3.43		mg/L	0.01 0.05	08/01/02 23:24	bf
Zinc, total recoverable	M200.7 ICP	3.28		mg/L	0.01 0.05	08/09/02 18:40	bf

### Metals Prep

Parameter	EPA Method Result Qual Units	MDL PQL Date	Analyst
Acidify and filter (PD)	Potentially dissolved (CO WQCC)	08/08/02 21:30	jb
Total Recoverable Digestion	M200.2 ICP-MS	. 07/26/02 22:00	jb
Total Recoverable Digestion	M200.2 ICP	07/31/02 15:04	dim

L37693: Page 6 of 11

2773 Downhill Drive Steamboat Springs, CO 80487(800) 334-5493

## Inorganic Analytical Results

**SEH** 

ACZ ID: L37693-04

Project ID:

AARCO E0105.00.00011

Date Sampled: 07/16/02 14:20

Sample ID:

Date Received:

07/19/02

Sample Matrix:

Surface Water

Wet Chemistry

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Acidity as CaCO3	SM2310B - Titration		U	mg/L	2	10	07/22/02 15:32	есг
Cyanide, WAD	SM4500-CN I-Colorimetric w/ distillation		U	mg/L	0.005	0.01	07/25/02 10:46	kЬ
Hardness as CaCO3	SM2340B - Calculation	742		mg/L	1	7	08/07/02 0:00	calc
Residue, Filterable (TDS) @180C	M160.1 - Gravimetric	1120		mg/L	10	20	07/19/02 15:13	Isa
Residue, Non- Filterable (TSS) @105C	M160.2 - Gravimetric	46		mg/L	5	20	07/19/02 13:15	lsa
Suffate	M375.3 - Gravimetric	700		mg/L	100	200	07/19/02 16:58	еу

Note: The Dissolved Iron value is estimated due to matrix interferences.

REPIN.01.11.00.01

L37693: Page 7 of 11

Inorganic

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

port neader	Explanations			
Batch	A distinct set of samples analyzed at a specific ti	me		
Found	Value of the QC Type of interest			
Limit	Upper limit for RPD, in %.			
Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)			
MDL	Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.			
PCN/SCN	A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis			
PQL	Practical Quantitation Limit, typically 5 times the MDL.			
QC	True Value of the Control Sample or the amount added to the Spike			
Rec	Amount of the true value or spike added recover	ed, in % (except for LCS	S, mg/Kg)	
RPD	Relative Percent Difference, calculation used for	Duplicate QC Types		
Upper	Upper Recovery Limit, in % (except for LCSS, m	ng/Kg)		
Sample	Value of the Sample of interest			
Sample Ty	pes			
AS	Analytical Spike (Post Digestion)	LFM	Laboratory Fortified Matrix	
ASD	Analytical Spike (Post Digestion) Duplicate	LFMD	Laboratory Fortified Matrix Duplicate	
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank	
LCSS	Laboratory Control Sample - Soil	MS/MSD	Matrix Spike/Matrix Spike Duplicate	
LCSW	Laboratory Control Sample - Water	PBS	Prep Blank - Soil	
LFB	Laboratory Fortified Blank	PBW	Prep Blank - Water	
Sample Tv	pe Explanations			
Blanks		or minimal contamination	n in the prep method procedure.	
Control San	nples Verifies the accuracy o	f the method, including th	ne prep procedure.	
Duplicates				
Dupiloutes	Verifies the precision of	f the instrument and/or m	ethod.	
Spikes/Forti	•	f the instrument and/or m trix interferences, if any.	ethod.	
Spikes/Forti	ified Matrix Determines sample ma		ethod.	
Spikes/Forti	ified Matrix  Determines sample ma	trix interferences, if any.	ethod.	
Spikes/Forti Z Qualifiers B	(Qual) Analyte concentration detected at a value between	trix interferences, if any. en MDL and PQL.		
Spikes/Forti Z Qualifiers B H	(Qual)  Analyte concentration detected at a value between Analysis exceeded method hold time. pH is a field.	trix interferences, if any. en MDL and PQL. Id test with an immediate	hold time.	
Spikes/Forti Z Qualifiers B H R	(Qual)  Analyte concentration detected at a value between Analysis exceeded method hold time. pH is a field Poor spike recovery accepted because the other	trix interferences, if any. en MDL and PQL. Id test with an immediate spike in the set fell within	hold time. n the given limits.	
Spikes/Forti Z Qualifiers B H R	(Qual)  Analyte concentration detected at a value between Analysis exceeded method hold time. pH is a field Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted	en MDL and PQL.  Id test with an immediate spike in the set fell within	hold time. n the given limits.	
Spikes/Forti Z Qualifiers B H R T	(Qual)  Analyte concentration detected at a value between Analysis exceeded method hold time. pH is a field Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the	en MDL and PQL.  Id test with an immediate spike in the set fell within the because sample conce indicated MDL	hold time. n the given limits. ntrations are less than 10x the MDL.	
Spikes/Forti Z Qualifiers B H R T U	(Qual)  Analyte concentration detected at a value between Analysis exceeded method hold time. pH is a field Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the High blank data accepted because sample concentrations.	en MDL and PQL.  Id test with an immediate spike in the set fell within decause sample conce indicated MDL entration is 10 times higher	hold time. In the given limits. Intrations are less than 10x the MDL. Per than blank concentration	
Spikes/Forti Z Qualifiers B H R T U V	(Qual)  Analyte concentration detected at a value between Analysis exceeded method hold time. pH is a field Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the High blank data accepted because sample concerpoor recovery for Silver quality control is accepted	en MDL and PQL.  Id test with an immediate spike in the set fell within decause sample conce indicated MDL entration is 10 times higher	hold time. In the given limits. Intrations are less than 10x the MDL. Per than blank concentration	
Spikes/Forti Z Qualifiers B H R T U	(Qual)  Analyte concentration detected at a value between Analysis exceeded method hold time. pH is a field Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the High blank data accepted because sample concentrations.	en MDL and PQL.  Id test with an immediate spike in the set fell within the because sample conce indicated MDL entration is 10 times higher decause Silver often p	hold time. In the given limits. Intrations are less than 10x the MDL. Inter than blank concentration Intercipitates with Chloride.	
Spikes/Forti Z Qualifiers B H R T U V W X Z	(Qual)  Analyte concentration detected at a value between Analysis exceeded method hold time. pH is a field Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the High blank data accepted because sample concern Poor recovery for Silver quality control is accepted Quality control sample is out of control.  Poor spike recovery is accepted because sample	en MDL and PQL.  Id test with an immediate spike in the set fell within the because sample conce indicated MDL entration is 10 times higher decause Silver often p	hold time. In the given limits. Intrations are less than 10x the MDL. Inter than blank concentration Intercipitates with Chloride.	
Spikes/Forti	(Qual)  Analyte concentration detected at a value between Analysis exceeded method hold time. pH is a field Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the High blank data accepted because sample concern recovery for Silver quality control is accepted Quality control sample is out of control.  Poor spike recovery is accepted because sample concerns accepted because sample is out of control.	en MDL and PQL. Id test with an immediate spike in the set fell within decause sample conceindicated MDL entration is 10 times higher decause Silver often perconcentration is four times	hold time. In the given limits. Intrations are less than 10x the MDL. It was a series than 10x the MDL. It was a series than 10x the MDL. It was than blank concentration It was greater than spike concentration.	
Spikes/Forti Z Qualifiers B H R T U V W X Z	(Qual)  Analyte concentration detected at a value between Analysis exceeded method hold time. pH is a fier Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the High blank data accepted because sample concerpoor recovery for Silver quality control is accepted Quality control sample is out of control.  Poor spike recovery is accepted because sample sample is out of control.  Poor spike recovery is accepted because sample inces	en MDL and PQL. Id test with an immediate spike in the set fell within discause sample conceindicated MDL entration is 10 times higher discause Silver often per concentration is four times is of Water and Wastes.	hold time. In the given limits. Intrations are less than 10x the MDL. Inter than blank concentration Intracipitates with Chloride. Interest greater than spike concentration. In March 1983.	
Spikes/Forti	(Qual)  Analyte concentration detected at a value between Analysis exceeded method hold time. pH is a field Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the High blank data accepted because sample concentration proor recovery for Silver quality control is accepted Quality control sample is out of control.  Poor spike recovery is accepted because sample inces  EPA 600/4-83-020. Methods for Chemical Analy EPA 600/R-93-100. Methods for the Determination.	en MDL and PQL. Id test with an immediate spike in the set fell within discause sample conceindicated MDL. Intration is 10 times higher discause Silver often perconcentration is four times of Water and Wastes on of Inorganic Substances.	hold time. In the given limits. Intrations are less than 10x the MDL. Iter than blank concentration Iteripitates with Chloride. Interest greater than spike concentration. Item March 1983. Iter in Environmental Samples, August 1993.	
Spikes/Forti	(Qual)  Analyte concentration detected at a value between Analysis exceeded method hold time. pH is a field Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the High blank data accepted because sample concern Poor recovery for Silver quality control is accepted Quality control sample is out of control. Poor spike recovery is accepted because sample sample is out of control. Poor spike recovery is accepted because sample inces  EPA 600/4-83-020. Methods for Chemical Analy EPA 600/R-93-100. Methods for the Determination EPA 600/R-94-111. Methods for the Determination in the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of	en MDL and PQL. Id test with an immediate spike in the set fell within decause sample conceindicated MDL entration is 10 times higher decause Silver often perconcentration is four times of Water and Wastes on of Inorganic Substance on of Metals in Environment.	hold time. In the given limits. Intrations are less than 10x the MDL.  Inter than blank concentration Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. Interceptates with Chloride. I	
Spikes/Forti	(Qual)  Analyte concentration detected at a value between Analysis exceeded method hold time. pH is a fier Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the High blank data accepted because sample concern Poor recovery for Silver quality control is accepted Quality control sample is out of control. Poor spike recovery is accepted because sample accepted because sample EPA 600/R-93-100. Methods for Chemical Analy EPA 600/R-94-111. Methods for the Determination EPA SW-846. Test Methods for Evaluating Solid	en MDL and PQL. Id test with an immediate spike in the set fell within discause sample conceindicated MDL entration is 10 times higher discause Silver often perconcentration is four times of Water and Wastes, on of Inorganic Substance on of Metals in Environmental Waste, Third Edition with	hold time. In the given limits. Intrations are less than 10x the MDL. Inter than blank concentration Intracipitates with Chloride. Interest greater than spike concentration. Interest in Environmental Samples, August 1993. Interest in Environmental Samples, August 1994. Interest in Environmental Samples, August 1995.	
Spikes/Forti	(Qual)  Analyte concentration detected at a value between Analysis exceeded method hold time. pH is a field Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the High blank data accepted because sample concern Poor recovery for Silver quality control is accepted Quality control sample is out of control. Poor spike recovery is accepted because sample sample is out of control. Poor spike recovery is accepted because sample inces  EPA 600/4-83-020. Methods for Chemical Analy EPA 600/R-93-100. Methods for the Determination EPA 600/R-94-111. Methods for the Determination in the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of	en MDL and PQL. Id test with an immediate spike in the set fell within discause sample conceindicated MDL entration is 10 times higher discause Silver often perconcentration is four times of Water and Wastes, on of Inorganic Substance on of Metals in Environmental Waste, Third Edition with	hold time. In the given limits. Intrations are less than 10x the MDL. Inter than blank concentration Intracipitates with Chloride. Interest greater than spike concentration. Interest in Environmental Samples, August 1993. Interest in Environmental Samples, August 1994. Interest in Environmental Samples, August 1995.	
Spikes/Forti	(Qual)  Analyte concentration detected at a value between Analysis exceeded method hold time. pH is a fier Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the High blank data accepted because sample concern Poor recovery for Silver quality control is accepted Quality control sample is out of control. Poor spike recovery is accepted because sample accepted because sample EPA 600/R-93-100. Methods for Chemical Analy EPA 600/R-94-111. Methods for the Determination EPA SW-846. Test Methods for Evaluating Solid	en MDL and PQL. Id test with an immediate spike in the set fell within discause sample conceindicated MDL entration is 10 times higher discause Silver often percentration is four times of Water and Wastes, on of Inorganic Substance on of Metals in Environman Waste, Third Edition with and Wastewater, 19th edition and Wastewater, 19th edition with and Wastewater, 19th edition with and Wastewater, 19th edition with and Wastewater, 19th edition with and Wastewater, 19th edition with and Wastewater, 19th edition with and Wastewater, 19th edition with and Wastewater, 19th edition with and Wastewater, 19th edition with and Wastewater, 19th edition with and Wastewater, 19th edition with and Wastewater, 19th edition with and Wastewater, 19th edition with and Wastewater, 19th edition with and Wastewater, 19th edition with an analysis of the properties of t	hold time. In the given limits. Intrations are less than 10x the MDL. Inter than blank concentration Intracipitates with Chloride. Interest greater than spike concentration. Interest in Environmental Samples, August 1993. Interest in Environmental Samples, August 1994. Interest in Environmental Samples, August 1995.	
Spikes/Forti Z Qualifiers B H R T U V W X Z Sthod Refere (1) (2) (3) (5) (6)	(Qual)  Analyte concentration detected at a value between Analysis exceeded method hold time. pH is a field Poor spike recovery accepted because the other High Relative Percent Difference (RPD) accepted Analyte was analyzed for but not detected at the High blank data accepted because sample concern Poor recovery for Silver quality control is accepted Quality control sample is out of control. Poor spike recovery is accepted because sample EPA 600/4-83-020. Methods for Chemical Analyte EPA 600/R-93-100. Methods for the Determination EPA SW-846. Test Methods for Evaluating Solid Standard Methods for the Examination of Water and Standard Meth	en MDL and PQL. Id test with an immediate spike in the set fell within decause sample conceindicated MDL entration is 10 times higher decause Silver often perconcentration is four times on of Inorganic Substancion of Metals in Environme Waste, Third Edition with and Wastewater, 19th edition	hold time. In the given limits. Intrations are less than 10x the MDL. Iter than blank concentration Iteripitates with Chloride. Interest greater than spike concentration. Interest in Environmental Samples, August 1993. Iterial Samples - Supplement I, May 1994. In Update III, December 1996. Ition, 1995.	

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Sample Receipt

SEH	
AARCO E0105.00.00011	Į

ACZ Project ID: Date Received: L37693 7/19/02

Received By:

TONYA

Recei	pt Verifi	cation

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Are the trip blanks (VOA and/or Cyanide) present?
- 12) Are samples requiring no headspace, headspace free?
- 13) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		1
1		
		1
1		
7		
√		
<b>√</b>		
<b>V</b>		: .
<b>√</b>		
1		
	1	
		√
		1 1

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

### Shipping Containers

Cooler Id		Temp (°C)	Rad (µR/hr)
ACZ		ROOM	14
	1		
	†	<del> </del>	<del> </del>

### Notes

SAMPLES MARKED AS 'NO' OUT OF pH RANGE - 1mL NaOH ADDED TO SAMPLE #01 (DR-7-SW) AND 2mL HNO3 ADDED TO SAMPLES #02 AND 04(DR-7 AND DR-3).

SEH

AARCO E0105.00.00011

ACZ Project ID:

L37693

Date Received:

7/19/02

Received By:

TONYA

	iner Preservation											
SAMPLE	CLIENTID	R < 2	G<2	Y<2	YG< 2	B < 2	BG< 2	0 < 2	T >12	P >12	N/A	RAD
L37693-01	DR-7-SW	Υ	Υ							N		
L37693-02	DR-7	N	Υ							Υ		}
L37693-03	DR-6	Υ	Y							Υ		
1 37603_04	DR-3	N	Υ							Υ		

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

CHAIN of CUSTODY

Quote #:	Quote #:				ACZ#: L37693						
CLIENT INFORMATION								ja et .			
Name to appear on Report and	Invoice			Carbo	on Cop	y: 1	Report	:		nvoice	:
SEH, INC.		<del> </del>	_								
2637 MIDPOINT D	R, SUT	EF_	-					<u> </u>			
FORT COLLINS, CO			_								
Attn: S. MOR GENSTERN	Tel: 484	-3611	-	Attn:				Tel:			
Email: SMOR GENSTERMO	SEHINC,	COM	-	Email	<u>:</u>						<del></del>
PROJECT INFORMATION			11 - 2 - 4		ANALY	SES RE	QUEST	ED (requ	iired; at	tach list	)
Client Project name and/or PO#					ł			<b>3</b>			
RICO/ST. LOUB PO.	NOS			of Containers	144			5	12	_	7
AARLO EOLOS, OT	1.0001	ŧ .		ntai	76	431	15 5	027	00	18	74. (ED
Shipping Company:				3	1,3	14 7	170J	# 850 15171	3	2	15
Tracking #:			· · · · ·	ŏ #	×,€	23	36	TOTAL ACTON	175	MERCUR	POTENTIALLY DISSOLVED
SAMPLE IDENTIFICATION	DATE	TIME	Matrix		L x	34	35	R	V	8	000
DR-7-SW	7-16-02	0:840	5W-	6	X	X	A	C	×	X	
DR-7	7-16-02	12:10	SW	<u>*6</u>	×		A	D	X	X	
DR-6	7-16-02	13:30	SW.	6	X		B	<u>C</u>	MX	1	F
DR-3	716-02	14:20	SW	7.	×	X	B	E	X	X	G
										1	
										<del> </del>	
	<del>                                     </del>		-	-				<del>                                     </del>			
	<del>  -</del>					· · · ·	<del></del>	<del> </del>		-	
	<del> </del>									<del> </del>	
	<del> </del>									<del> </del>	
	<del> </del>							-		<del> </del> -	
Matrix SW (Surface Water) · 0	W (Ground	Water) . W	/W /Wast	o Wate	r) · DW	/Drinki	na Wat	er)	L	<u></u>	L
Matrix   SW (Surface Water) · C Options   SL (Sludge) · SO (Soil)	<del>-</del> '	•		e wate	a) - 044	(Cillian	ny wat	ei j	:		
REMARKS										1177	
A= Cd, Cu, Pb, Mn, N	1:, Se, A	1, 24	C= A.	C.	Fe D	ACV)	,Fe	<b> =</b> =	CdjC	MACU	ZA
A=Cd, Cu, Pb, Mn, N B=Cd, Cu, Fe, Pb, N	In Ni	S. Ag.	ZA F	A.	96	Cir	Ma	7 . F		Wis.	19 (
											774
RELINQUISHED BY:		DATE:T		<u>^</u>	RECEIV	ED BA		)   45 /	ATE:		PAGE
STEVEN MORGENSTERN	<u> </u>	6-02 1	4:40	0	1	·		07//	02	1130	
				ļ							Of
	}										

FRMQA021.01.00.03

White - Return with sample.

Yellow - Retain for your records.



Analytical Report

August 16, 2002

Steven Morgenstern

SEH

2637 Midpoint Drive Suite F

Fort Collins, CO 80525

Project: L37666

Steven Morgenstern:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on July 17, 2002. This project has been assigned to ACZ's project number, L37666. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan, version 9.0. The enclosed results relate only to the samples received under L37666. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Please assess the enclosed report only in its entirety. ACZ prohibits the reproduction of this report, except in full, without the written approval of ACZ. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after September 16, 2002. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years. Please notify your Project Manager if you have other needs.

If you have any questions, please contact your Project Manager or Customer Service Representative.

Spile Bankay

16/Aug/02

Sue Barkey, Project Manager, has reviewed and accepted this report in its entirety.

M160.2 - Gravimetric

## Inorganic Analytical Results

SEH

Project ID:

**RICO/ST LOUIS PONDS-**

Sample ID:

DR-4-SW

ACZ ID: L37666-01

Date Sampled:

07/14/02 15:25

Date Received:

07/17/02

Sample Matrix:

Surface Water

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analysi
Cadmium, dissolved	M200.7 ICP		U	mg/L	0.003	0.02	08/12/02 22:02	ci
Calcium, dissolved	M200.7 ICP	9.2		mg/L	0.2	1	08/15/02 19:52	bi
Chromium, total recoverable	M200.8 ICP-MS	0.0014	•	mg/L	0.0001	0.0005	07/31/02 2:36	lc
Copper, dissolved	M200.8 ICP-MS	0.001	В	mg/L	0.001	0.005	08/01/02 1:11	lc
Iron, total recoverable	M200.7 ICP	0.12		mg/L	0.01	0.05	08/07/02 17:07	bi
Lead, dissolved	M200.8 ICP-MS		U	mg/L	0.0002	0.001	07/30/02 20:12	jb
Magnesium, dissolved	M200.7 ICP	1.1		mg/L	0.2	1	08/15/02 19:52	bi
Manganese, dissolved	M200.7 ICP	0.021	В	mg/L	0.005	0.03	08/15/02 19:52	bf
Nickel, dissolved	M200.7 ICP		U	mg/L	0.01	0.05	08/15/02 19:52	bf
Selenium, dissolved	M200.8 ICP-MS		U	mg/L	0.003	0.02	07/30/02 20:12	jb
Silver, dissolved	M200.8 ICP-MS	0.0002	В	mg/L	0.0001	0.0005	07/30/02 20:12	jb
Zinc, dissolved	M200.7 ICP	0.01	В	mg/L	0.01	0.05	08/15/02 19:52	bf
Metals Prep								
Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analys
Total Recoverable Digestion	M200.2 ICP-MS						07/26/02 19:45	jb
Total Recoverable Digestion	M200.2 ICP						07/24/02 16:43	dim
Wet Chemistry								
Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analys
Cyanide, WAD	SM4500-CN I-Colorimetric w/ distillation		U	mg/L	0.005	0.01	07/25/02 11:30	kt
Hardness as CaCO3	SM2340B - Calculation	28		mg/L	1	7	08/16/02 9:42	cald
Residue, Filterable	M160.1 - Gravimetric	340		mg/L	10	20	07/17/02 20:59	wfg

8

В

mg/L

5

20

07/17/02 22:25

wfg

(TDS) @180C

Residue, Non-

Filterable (TSS) @105C

### Inorganic Analytical Results

SEH

Project ID:

RICO/ST LOUIS PONDS-

Sample ID:

ACZ ID: L37666-02

Date Sampled:

07/14/02 17:30

Date Received:

07/17/02

Sample Matrix:

Surface Water

			•
Metal	ls Ai	nalv	SIS
111000	,,,,		

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Cadmium, dissolved	M200.7 ICP		U	mg/L	0.003	0.02	08/12/02 22:21	ct
Calcium, dissolved	M200.7 ICP	251		mg/L	0.2	1	08/12/02 22:21	ct
Chromium, total recoverable	M200.8 ICP-MS	0.0023	•	mg/L	0.0001	0.0005	07/31/02 2:41	lcj
Copper, dissolved	M200.8 ICP-MS	0.002	В	mg/L	0.001	0.005	08/01/02 1:16	lcj
tron, total recoverable	M200.7 ICP	12.90		mg/L	0.01	0.05	08/01/02 20:02	bf
Lead, dissolved	M200.8 ICP-MS		U	mg/L	0.0002	0.001	07/30/02 20:17	jb
Magnesium, dissolved	M200.7 ICP	21.3		mg/L	0.2	1	08/01/02 12:43	kdw
Manganese, dissolved	M200.7 ICP	0.231		mg/L	0.005	0.03	08/07/02 21:08	kdw
Nickel, dissolved	M200.7 ICP		U	mg/L	0.01	0.05	08/01/02 12:43	kdw
Selenium, dissolved	M200.8 ICP-MS		U	mg/L	0.003	0.02	07/30/02 20:17	jb
Silver, dissolved	M200.8 ICP-MS		U	mg/L	0.0001	0.0005	07/30/02 20:17	jb
Zinc, dissolved	M200.7 ICP	0.02	В	mg/L	0.01	0.05	08/12/02 22:21	ct

#### Metals Prep

Parameter	EPA Method	Result Qual Units	MDL PQL Date	Analyst
Total Recoverable Digestion	M200.2 ICP		07/24/02 17:02	2 dlm
Total Recoverable Digestion	M200.2 ICP-MS		07/26/02 20:00	) jb

Met Olietinan A							
Parameter	EPA Method	Result Qua	Units	MDL	PQL	Date	Analyst
Hardness as CaCO3	SM2340B - Calculation	715	mg/L	1	7	08/16/02 9:42	calc
Residue, Filterable (TDS) @180C	M160.1 - Gravimetric	1040	mg/L	10	20	07/17/02 21:00	wfg
Residue, Non- Filterable (TSS) @105C	M160.2 - Gravimetric	344	mg/L	5	20	07/17/02 22:28	wfg

### **Inorganic Analytical** Results

SEH

Project ID:

**RICO/ST LOUIS PONDS-**

Sample ID:

DR-26

ACZ ID:

L37666-03

Date Sampled:

07/14/02 18:40

Date Received:

07/17/02

Sample Matrix:

Surface Water

Metals Analysis

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Cadmium, dissolved	M200.7 ICP		U	mg/L	0.003	0.02	08/12/02 22:26	ct
Calcium, dissolved	M200.7 ICP	83.0		mg/L	0.2	1	08/01/02 12:47	kdw
Chromium, total recoverable	M200.8 ICP-MS	0.0014		mg/L	0.0001	0.0005	07/31/02 2:45	lcj
Copper, dissolved	M200.8 ICP-MS	0.001	В	mg/L	0.001	0.005	08/01/02 1:30	lcj
Iron, total recoverable	M200.7 ICP	0.16		mg/L	0.01	0.05	08/07/02 17:11	bf
Lead, dissolved	M200.8 ICP-MS		U	mg/L	0.0002	0.001	07/30/02 20:22	jb
Magnesium, dissolved	M200.7 ICP	10.4		mg/L	0.2	1	08/01/02 12:47	kdw
Manganese, dissolved	M200.7 ICP	0.229		mg/L	0.005	0.03	08/01/02 12:47	kdw
Nickel, dissolved	M200.7 ICP		U	mg/L	0.01	0.05	08/01/02 12:47	kdw
Selenium, dissolved	M200.8 ICP-MS		U	mg/L	0.003	0.02	07/30/02 20:22	jb
Silver, dissolved	M200.8 ICP-MS		U	mg/L	0.0001	0.0005	07/30/02 20:22	jb
Zinc, dissolved	M200.7 ICP	0.08		mg/L	0.01	0.05	08/01/02 12:47	kdw

Metals Prep

Parameter	EPA Method	R	esult Qua	Units	MDL	PQL	Date	Analyst
Total Recoverable	M200.2 ICP-MS						07/26/02 20	:15 jb
Total Recoverable Digestion	M200.2 ICP						07/24/02 17:	:21 dlm

TTOL OHOHIOLIY								
Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Cyanide, WAD	SM4500-CN I-Colorimetric w/ distillation		U	mg/L	0.005	0.01	07/25/02 11:32	kb
Hardness as CaCO3	SM2340B - Calculation	250		mg/L	1	7	08/16/02 9:42	calc
Residue, Filterable (TDS) @180C	M160.1 - Gravimetric	330		mg/L	10	20	07/17/02 21:01	wfg
Residue, Non- Filterable (TSS)	M160.2 - Gravimetric		U	mg/L	5	20	07/17/02 22:30	wfg

## Inorganic Analytical Results

SEH

Project ID:

RICO/ST LOUIS PONDS-

Sample ID:

DR-2-SW

ACZ ID: L37666-04

Date Sampled:

07/15/02 13:40

Date Received:

07/17/02

Sample Matrix:

Surface Water

Metals Analysis Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analys
Cadmium, dissolved	M200.7 ICP		U	mg/L	0.003	0.02	08/12/02 22:40	С
Calcium, dissolved	M200.7 ICP	82.7		mg/L	0.2	1	08/01/02 12:50	kdv
Chromium, total recoverable	M200.8 ICP-MS	0.0013		mg/L	0.0001	0.0005	07/31/02 3:00	lo
Copper, dissolved	M200.8 ICP-MS	0.002	В	mg/L	0.001	0.005	08/01/02 1:35	lo
Iron, total recoverable	M200.7 ICP	0.12		mg/L	0.01	0.05	08/01/02 6:38	b
Lead, dissolved	M200.8 ICP-MS	0.0002	В	mg/L	0.0002	0.001	08/01/02 1:35	lo
Magnesium, dissolved	M200.7 ICP	10.3		mg/L	0.2	1	08/01/02 12:50	kdw
Manganese, dissolved	M200.7 ICP	0.210		mg/L	0.005	0.03	08/01/02 12:50	kďv
Nickel, dissolved	M200.7 ICP		U	mg/L	0.01	0.05	08/01/02 12:50	kdv
Selenium, dissolved	M200.8 ICP-MS		U	mg/L	0.003	0.02	08/01/02 1:35	lo
Silver, dissolved	M200.8 ICP-MS		U	mg/L	0.0003	0.001	08/02/02 4:40	lo
Zinc, dissolved	M200.7 ICP	0.05		mg/L	0.01	0.05	08/01/02 12:50	kdv
Metals Prep								
Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analys
Total Recoverable Digestion	M200.2 ICP-MS						07/26/02 20:30	jb
Total Recoverable Digestion	M200.2 ICP						07/29/02 11:14	dlm
Wet Chemistry								
Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analys
Cyanide, WAD	SM4500-CN i-Colorimetric w/ distillation		U	mg/L	0.005	0.01	07/25/02 11:33	kł
Hardness as CaCO3	SM2340B - Calculation	249		mg/L	1	Ź	08/16/02 9:42	cald
Residue, Filterable (TDS) @180C	M160.1 - Gravimetric	330		mg/L	10	20	07/17/02 21:02	wfg
Residue, Non- Filterable (TSS) @105C	M160.2 - Gravimetric		υ	mg/L	5	20	07/17/02 22:32	wfg

Inorganic Reference

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

		ianat	

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest

Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation.Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

#### QC Sample Types

AS	Analytical Spike (Post Digestion)	LFM	Laboratory Fortified Matrix
ASD	Analytical Spike (Post Digestion) Duplicate	<b>LFMD</b>	Laboratory Fortified Matrix Duplicate
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank
LCSS	Laboratory Control Sample - Soil	MS/MSD	Matrix Spike/Matrix Spike Duplicate
LCSW	Laboratory Control Sample - Water	PBS	Prep Blank - Soil
LFB	Laboratory Fortified Blank	PBW	Prep Blank - Water

#### QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method.

Spikes/Fortified Matrix Determines sample matrix interferences, if any.

#### ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- R Poor spike recovery accepted because the other spike in the set fell within the given limits.
- T High Relative Percent Difference (RPD) accepted because sample concentrations are less than 10x the MDL.
- U Analyte was analyzed for but not detected at the indicated MDL
- V High blank data accepted because sample concentration is 10 times higher than blank concentration
- W Poor recovery for Silver quality control is accepted because Silver often precipitates with Chloride.
- X Quality control sample is out of control.
- Z Poor spike recovery is accepted because sample concentration is four times greater than spike concentration.

#### Method References

- EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

#### Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

REPIN03.11.00.01

L37666: Page 6 of 10

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Sample Receipt

-	-	
•	<b>1</b> 21	
	r.	

RICO/ST LOUIS PONDS-

ACZ Project ID:

L37666

Date Received:

7/17/02

Received By:

tinaw

Ē,	æ	ei	pt V	eri	ica	ic	П
			30.00		1		

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Are the trip blanks (VOA and/or Cyanide) present?
- 12) Are samples requiring no headspace, headspace free?
- 13) Do the samples that require a Foreign Soils Permit have one?

YES	NO	NA
		1
<b>V</b>		
		4
1		
√		
<b>√</b>		, N.
1		
1		
1		
1		
		1
		1
		1

#### Exceptions: If you answered no to any of the above questions, please describe

N/A

#### Contact (For any discrepancies, the client must be contacted)

N/A

#### Shipping Containers

Temp (°C)	Rad (µR/hr)
17.7	15
	<del> </del>
	<del></del>

Notes

Sample Receipt

SEH

RICO/ST LOUIS PONDS-

ACZ Project ID:

L37666

Date Received:

7/17/02

Received By:

tinaw

Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	Y < 2	YG<2	B < 2	BG< 2	0<2	T >12	P >12	N/A	RAD
L37666-01	DR-4-SW	Y	Υ							Υ		
L37666-02	DR-28	Υ	_Y									
L37666-03	DR-26	Y	Y							Υ		
L37666-04	DR-2-SW	Y	Υ							Y		

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

CHAIN of CUSTODY

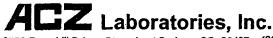
Quote #:				ACZ#: L3766610						
CLIENT INFORMATION										
Name to appear on Report and	Invoice		Carbon Copy: Report: Invoice:							
SEH ING						_			<del></del>	
2637 MIDPO	INT DRIVE,	LSTEF	<i>-</i>							
FORT COLLINS	, CO 805Z	5		<del></del>			_			
Attn: S. MORGENSTERN			Attn:				Tel:		<b></b>	
Email: SMOTGEASTERN	a sehincic	an.	Email	:	···-					
				ANALY	SES RE	QUEST	ED (req	uired; at	tach list	
Client Project name and/or POA	te PANAS			ĺ		57	=	I	İ	<b>i i</b>
AARCOE0105	,00 /TASK 1	1	of Containers	1	1	DISSOLVED*	¥	HARDNESS		
Shipping Company:			l g	755	705	<u>8</u>	75	3	5	Je l
Tracking #:			50			\$	μ μ	E .	12	,
SAMPLE IDENTIFICATION	DATE:TIME	Matrix	*			13	8	Ĺ		
DR-4-SW	7-14-02 15:25		6	×	×	ト	×	X	×	X
DR-28	7-14-02 17:30			X	X	×	X	×	No	
DR-26	7-14-02 18:40	SW	5	X	X	<	+	X	×	
DR-2-5W	7-15-02 13:40	SW	5	メ	X	4	X	X	×	
								-		
<del></del>				_				<b></b>		
		_								
Matrix SW (Surface Water) · C Options SL (Sludge) · SO (Soil)	•		e Wate	r) · DW	(Drinki	ng Wate	∋r)	1	1	
REMARKS					- 5		4 5 15			
* METALS = Cd	Cu, PG, Pb, 1	MA, A	g, Z	۸, ۸	vi,	Se				
TOTAL RECOV = Cr	, Fe	•								
RELINQUISHED BY:	DATE:T	IME	F	RECEIL	/ED BY		D	ATE:TI	ИE	PAGE
STEVEN MORGENSTEAN 7+15-02 15100			-11	(III)	,				10:0	
7/200 F.10/10 E/03/CI				, con	·			·	10.4	Of
							·			
						1				

FRMQA021.01.00.03

White - Return with sample.

Yellow - Retain for your records.

TABLE 2
Analytical Procedures Summary


Parameter	Detection Limit	Method
Field Parameters		
pH (s.u.)	•••	EPA 150.1
Temperature (°C)		Standard Method 2550
Conductivity (µmhos/cm)		EPA 120.1
Alkalinity (mg/L as CaCO ₃ )	5 mg/L	EPA 310.1
General Parameters	·	
Hardness (mg/L as CaCO ₃ )	l mg/L	EPA 6010/130.2
Total Dissolved Solids (mg/L as TDS)	10 mg/L	EPA 160.1
Total Suspended Solids (mg/L as TSS)	5 mg/L	EPA 160.2
Trace Metals		
Arsenic (µg/L as As)	0.5 μg/L	ICP-MS
Chromium (µg/L as Cr)	.05 μg/L	ICP-MS
Cadmium (µg/L as Cd)	3 μg/L	ICP
¿Copper (μg/L as Cu)	0.5 μg/L	ICP-MS
Cyanide (µg/L as CN)	5-10 μg/L	Low-level WAD
Iron (µg/L as Fe)	10 μg/L	ICP
Lead (µg/L as Pb)	0.1 μg/L	ICP-MS
Manganese (μg/L as Mn)	5 μg/L	ICP
Mercury (μg/L as Hg)	0.000020 μg/L	EPA-1631
Nickel (µg/L as Ni)	10 μg/L	ICP
Selenium (μg/L as Se)	1.5μg/L	ICP-MS
⊵Silver (μg/L as Ag)	0.05 μg/L	ICP-MS -
Zinc (µg/L as Zn)	10 μg/L	ICP

#### 5.0 Flow Measurement Methods

Discharge measurements will be conducted in accordance with the measurement procedures used for the Rico site remediation as well as USGS standard discharge measurement procedures. Flows will be measured by one of three methods (1) a Marsh-McBirney Model 2000 portable flow meter, (2) Parshall flume, or (3) volumetric procedure using a 5-gallon bucket.

5

C.\WINNT\PROFILES\CARRIEE.000\TE MPORARY INTERNET FILES\OLK7F\SAMPLING PLAN.DOC



2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Analytical Report

August 16, 2002

Steven Morgenstern

SEH

2637 Midpoint Drive Suite F

Fort Collins, CO 80525

Project: L37719

Steven Morgenstern:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on July 20, 2002. This project has been assigned to ACZ's project number, L37719. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan, version 9.0. The enclosed results relate only to the samples received under L37719. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Please assess the enclosed report only in its entirety. ACZ prohibits the reproduction of this report, except in full, without the written approval of ACZ. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after September 16, 2002. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years. Please notify your Project Manager if you have other needs

If you have any questions, please contact your Project Manager or Customer Service Representative.

Style Banksy

16/Aug/02

Sue Barkey, Project Manager, has reviewed and accepted this report in its entirety.

REPAD.01.11.00.01

L37719: Page 1 of 8

### Inorganic Analytical Results

SEH

Project ID:

AARCOE 0105.00.00011

Sample ID:

DR-20

ACZ ID: L37719-01

Date Sampled:

07/19/02 08:40

Date Received:

07/20/02

Sample Matrix:

Surface Water

Metal	ls Ar	aly	sis

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Cadmium, dissolved	M200.7 ICP		U	mg/L	0.003	0.02	08/12/02 23:05	ct
Calcium, dissolved	M200.7 ICP	47.9		mg/L	0.2	1	08/07/02 1:43	kdw
Chromium, total recoverable	M200.8 ICP-MS	0.0001	В	mg/L	0.0001	0.0005	08/02/02 8:38	lcj
Copper, dissolved	M200.8 ICP-MS		U	mg/L	0.001	0.005	08/14/02 4:39	lcj
Iron, total recoverable	M200.7 ICP	0.09		mg/L	0.01	0.05	08/10/02 20:30	bf
Lead, dissolved	M200.8 ICP-MS		U	mg/L	0.0002	0.001	08/14/02 4:39	lcj
Magnesium, dissolved	M200.7 ICP	6.9		mg/L	0.2	1	08/07/02 1:43	kdw
Manganese, dissolved	M200.7 ICP	0.079		mg/L	0.005	0.03	08/07/02 1:43	kdw
Nickel, dissolved	M200.7 ICP		U	mg/L	0.01	0.05	08/07/02 1:43	kdw
Selenium, dissolved	M200.8 ICP-MS		U	mg/L	0.003	0.02	08/14/02 4:39	lcj
Silver, dissolved	M200.8 ICP-MS		U	mg/L	0.0001	0.0005	08/14/02 4:39	lcj
Zinc, dissolved	M200.7 ICP	0.02	В	mg/L	0.01	0.05	08/07/02 1:43	kdw

#### Metals Prep

Parameter	EPA Method Result Qual Units MDL PQI	Date	Analyst
Total Recoverable Digestion	M200.2 ICP-MS	07/31/02 19:17	jb
Total Recoverable Digestion	M200.2 ICP	07/31/02 10:36	dlm

TTCL CHOINSHY								
Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Cyanide, WAD	SM4500-CN I-Colorimetric w/ distillation		U	mg/L	0.005	0.01	07/25/02 10:46	kb
Hardness as CaCO3	SM2340B - Calculation	148	i	mg/L	1	7	08/16/02 11:55	calc
Residue, Filterable (TDS) @180C	M160.1 - Gravimetric	210		mg/L	10	20	07/22/02 10:16	Isa
Residue, Non- Filterable (TSS) @105C	M160.2 - Gravimetric		U	mg/L	5	20	07/20/02 17:51	wfg

### Inorganic Analytical Results

SEH

Project ID:

AARCOE 0105.00.00011

Sample ID:

DR-1

ACZ ID: L37719-02

Date Sampled:

07/19/02 10:10

Date Received:

07/20/02

Sample Matrix:

Surface Water

Metals	<b>Analysis</b>

Parameter	EPA Method		Result	Qual	Units	MDL	PQL	Date	Analyst
Cadmium, dissolved	M200.7 ICP		0.003	В	mg/L	0.003	0.02	08/12/02 23:10	ct
Calcium, dissolved	M200.7 ICP		43.1		mg/L	0.2	1	08/07/02 1:48	kdw
Chromium, total recoverable	M200.8 ICP-MS			U	mg/L	0.0001	0.0005	08/02/02 8:43	lcj
Copper, dissolved	M200.8 ICP-MS			U	mg/L	0.001	0.005	08/10/02 6:05	lcj
Iron, total recoverable	M200.7 ICP		0.05	В	mg/L	0.01	0.05	08/10/02 20:34	bf
Lead, dissolved	M200.8 ICP-MS			υ	mg/L	0.0002	0.001	08/10/02 6:05	lcj
Magnesium, dissolved	M200.7 ICP		6.3		mg/L	0.2	1	08/07/02 1:48	kdw
Manganese, dissolved	M200.7 ICP		0.013	В	mg/L	0.005	0.03	08/07/02 1:48	kdw
Nickel, dissolved	M200.7 ICP			U	mg/L	0.01	0.05	08/07/02 1:48	kdw
Selenium, dissolved	M200.8 ICP-MS			U	mg/L	0.003	0.02	08/10/02 6:05	lcj
Silver, dissolved	M200.8 ICP-MS			U	mg/L	0.0001	0.0005	08/14/02 4:55	lcj
Zinc, dissolved	M200.7 ICP	•	0.02	В	mg/L	0.01	0.05	08/07/02 1:48	kdw

#### Metals Prep

Parameter	EPA Method Result Qual Units	MDL PQL Date Analyst
Total Recoverable Digestion	M200.2 ICP-MS	07/31/02 19:31 jb
Total Recoverable Digestion	M200.2 ICP	07/31/02 10:55 dlm

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Cyanide, WAD	SM4500-CN I-Colorimetric w/ distillation		υ	mg/L	0.005	0.01	07/25/02 10:47	kb
Hardness as CaCO3	SM2340B - Calculation	134		mg/L	1	7	08/16/02 11:55	calc
Residue, Filterable (TDS) @180C	M160.1 - Gravimetric	190		mg/L	10	20	07/22/02 10:18	Isa
Residue, Non- Filterable (TSS) @105C	M160.2 - Gravimetric		U	mg/L	5	20	07/20/02 17:54	wfg

### Inorganic Analytical Results

SEH

Project ID:

AARCOE 0105.00.00011

Sample ID:

**SVS-26** 

ACZ ID: L37719-03

Date Sampled:

07/19/02 12:20

Date Received:

07/20/02

Sample Matrix:

Surface Water

Metals Analysis

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Arsenic, total recoverable	M200.8 ICP-MS		U	mg/L	0.0005	0.003	08/02/02 8:47	lcj
Cadmium, dissolved	M200.7 ICP	0.016	В	mg/L	0.003	0.02	08/12/02 23:15	ct
Calcium, dissolved	M200.7 ICP	125		mg/L	0.2	1	08/12/02 23:15	ct
Chromium, total recoverable	M200.8 ICP-MS		U	mg/L	0.0001	0.0005	08/02/02 8:47	lcj
Copper, dissolved	M200.8 ICP-MS	0.051		mg/L	0.001	0.005	08/14/02 5:00	lcj
Iron, total recoverable	M200.7 ICP	14.80		mg/L	0.01	0.05	08/10/02 20:46	bf
Lead, dissolved	M200.8 ICP-MS	0.0407		mg/L	0.0002	0.001	08/14/02 5:00	lcj
Magnesium, dissolved	M200.7 ICP	22		mg/L	2	10	08/16/02 5:07	bf
Manganese, dissolved	M200.7 ICP	10.800		mg/L	0.005	0.03	08/12/02 23:15	ct
Nickel, dissolved	M200.7 ICP		U	mg/L	0.1	0.5	08/16/02 5:07	bf
Selenium, dissolved	M200.8 ICP-MS		U	mg/L	0.003	0.02	08/14/02 5:00	lcj
Silver, dissolved	M200.8 ICP-MS		U	mg/L	0.0001	0.0005	08/14/02 5:00	lcj
Zinc, dissolved	M200.7 ICP	8.05		mg/L	0.01	0.05	08/12/02 23:15	ct

Metals Prep

Parameter	EPA Method	Result Qual	Units	MDL	PQL	Date		Analyst
Total Recoverable Digestion	M200.2 ICP-MS				0	7/31/02 19	:44	jb
Total Recoverable Digestion	M200.2 ICP				0	7/31/02 11	:14	dlm

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Cyanide, WAD	SM4500-CN I-Colorimetric w/ distillation		U	mg/L	0.005	0.01	07/25/02 10:50	kb
Hardness as CaCO3	SM2340B - Calculation	403		mg/L	1	7	08/16/02 11:55	calc
Residue, Filterable (TDS) @180C	M160.1 - Gravimetric	630		mg/L	10	20	07/23/02 14:52	Isa
Residue, Non- Filterable (TSS) @105C	M160.2 - Gravimetric	6	В	mg/L	5	20	07/20/02 17:57	wfg

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Inorganic Reference

#### Report Header Explanations

Batch A distinct set of samples analyzed at a specific time

Found Value of the QC Type of interest

Limit Upper limit for RPD, in %.

Lower Recovery Limit, in % (except for LCSS, mg/Kg)

MDL Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.

PCN/SCN A number assigned to reagents/standards to trace to the manufacturer's certificate of analysis

PQL Practical Quantitation Limit, typically 5 times the MDL.

QC True Value of the Control Sample or the amount added to the Spike

Rec Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)

RPD Relative Percent Difference, calculation used for Duplicate QC Types

Upper Upper Recovery Limit, in % (except for LCSS, mg/Kg)

Sample Value of the Sample of interest

#### QC Sample Types

AS	Analytical Spike (Post Digestion)	LFM	Laboratory Fortified Matrix	
ASD	Analytical Spike (Post Digestion) Duplicate	LFMD	Laboratory Fortified Matrix Duplicate	
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank	
LCSS	Laboratory Control Sample - Soil	MS/MSD	Matrix Spike/Matrix Spike Duplicate	
LCSW	Laboratory Control Sample - Water	PBS	Prep Blank - Soil	
LFB	Laboratory Fortified Blank	PBW	Prep Blank - Water	

#### QC Sample Type Explanations

Blanks Verifies that there is no or minimal contamination in the prep method procedure.

Control Samples Verifies the accuracy of the method, including the prep procedure.

Duplicates Verifies the precision of the instrument and/or method.

Spikes/Fortified Matrix Determines sample matrix interferences, if any.

#### ACZ Qualifiers (Qual)

- B Analyte concentration detected at a value between MDL and PQL.
- H Analysis exceeded method hold time. pH is a field test with an immediate hold time.
- R Poor spike recovery accepted because the other spike in the set fell within the given limits.
- T High Relative Percent Difference (RPD) accepted because sample concentrations are less than 10x the MDL.
- U Analyte was analyzed for but not detected at the indicated MDL
- V High blank data accepted because sample concentration is 10 times higher than blank concentration
- W Poor recovery for Silver quality control is accepted because Silver often precipitates with Chloride.
- X Quality control sample is out of control.
- Z Poor spike recovery is accepted because sample concentration is four times greater than spike concentration.

#### Method References

- (1) EPA 600/4-83-020. Methods for Chemical Analysis of Water and Wastes, March 1983.
- (2) EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.
- (3) EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples Supplement I, May 1994.
- (5) EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.
- (6) Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.

#### Comments

- (1) QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.
- (2) Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.
- (3) Animal matrices for Inorganic analyses are reported on an "as received" basis.

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Sample Receipt

SEH

AARCOE 0105.00.00011

ACZ Project ID:

L37719

Date Received:

7/20/02

Received By:

**TONYA** 

			ific	

- 1) Does this project require special handling procedures such as CLP protocol?
- 2) Are the custody seals on the cooler intact?
- 3) Are the custody seals on the sample containers intact?
- 4) Is there a Chain of Custody or other directive shipping papers present?
- 5) Is the Chain of Custody complete?
- 6) Is the Chain of Custody in agreement with the samples received?
- 7) Is there enough sample for all requested analyses?
- 8) Are all samples within holding times for requested analyses?
- 9) Were all sample containers received intact?
- 10) Are the temperature blanks present?
- 11) Are the trip blanks (VOA and/or Cyanide) present?
- 12) Are samples requiring no headspace, headspace free?
- 13) Do the samples that require a Foreign Soils Permit have one?

NO	NA
	1
	1
	_
1	
	1
	1
	NO

Exceptions: If you answered no to any of the above questions, please describe

N/A

Contact (For any discrepancies, the client must be contacted)

N/A

Shipping Containers

Cooler Id		Temp (°C)	Rad (µR/hr)
ACZ		9.4	12
	1		
	<del> </del>	<del> </del> -	
	<del>}</del> -	<del></del> -	
		ļ	ľ



Sample Receipt

SEH

AARCOE 0105.00.00011

ACZ Project ID:

L37719

Date Received:

7/20/02

Received By:

TONYA

### Sample Container Preservation

SAMPLE	CLIENT ID	R < 2	G < 2	Y < 2	YG<2	B < 2	BG< 2	0<2	T >12	P >12	N/A	RAD
L37719-01	DR-20	Υ	Υ							Υ		
L37719-02	DR-1	Υ	Υ		_					Υ		
L37719-03	SVS-26	Y	Υ							Υ		

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

CHAIN of CUSTODY

Quote #:				ACZ#: L37719							
CLIENT INFORMATION											
Name to appear on Report and Invoice				Carbo	on Copy	y: I	Report:		ln	volce:	
SEH, INC.			_								
2637 MIOPOINT OR,	Sujye F	<del>-</del>	_		·				<del> </del>		_
FORT COLLINS, CO	88525	·	_								
Attn:STEVEN M.	Tel: 484	-3611	_	Attn:				Tel:			
Email: SMOR GENSTERNA			_	Email	<u>:</u>						
·					ANALY	SES RE	QUEST	ED (requ	ired; atta	ch list)	
Client Project name and/or PO					5	1	Á				
AICO/ST. LOUIS PONI	20			90.8	ر د	1	5	<b>\</b> \ \	1	ł	
AAR(0E0105.00,000	D11			of Containers	43	05	TOTAL RECOVE	13		- 1	
Shipping Company:				ខ្ល	1 3	01VE	7 7	<u>                                    </u>		}	
Tracking #:				ō #	X, §	SF	50	1 X			
SAMPLE IDENTIFICATION	DATE	TIME	Matrix		E	3 5		12/			
DR-20	7/A/02	08:40	SW	5	X	A	B				
DR-1	7/19/02	10:10	5W	5	X	A	B				
315-26	7/19/02	12:20	SW	5	X	A	<b>C</b>				
	' '										
<u> </u>	<u> </u>										
	<del> </del>										
	<del> </del>							<b></b>	<del></del>		
	<del> </del>			<b> </b>	<b>-</b>						
	<del> </del>									+	
	<del> </del>										
Matrix SW (Surface Water)	GW (Ground	Water) · W	/W (Wast	e Wate	r) · DW	(Drinki)	on Wate	er)			
Options   SL (Sludge) · SO (Soil					., 511	(Ormina)	ng man	<b>-</b> 1,			
REMARKS											
A = Cd, Cu, Pb, Mn,	Ni, Se,	Ag, ZA	•			C=	: As	Cr	. Fe		
B=Cr, Fe		-					_	, .	, -		
RELINQUISHED BY:		DATE:T			RECEIV	/ED BY		DA	TE:TIM	2	PAGE
STEVEN MORGENSTERN	7/19	3/02 /	4:00	2	8			07/	20/02	1000	
		•			V					- }	Of
										$\neg$	

1. 1. .



2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

Analytical Report

October 30, 2002

Steven Morgenstern

SEH

2637 Midpoint Drive Suite F

Fort Collins, CO 80525

Project: L39055

Steven Morgenstern:

Enclosed are the analytical results for sample(s) submitted to ACZ Laboratories, Inc. (ACZ) on October 24, 2002. This project has been assigned to ACZ's project number, L39055. Please reference this number in all future inquiries.

All analyses were performed according to ACZ's Quality Assurance Plan, version 9.0. The enclosed results relate only to the samples received under L39055. Each section of this report has been reviewed and approved by the appropriate Laboratory Supervisor, or a qualified substitute.

Please assess the enclosed report only in its entirety. ACZ prohibits the reproduction of this report, except in full, without the written approval of ACZ. ACZ is not responsible for the consequences arising from the use of a partial report.

All samples and sub-samples associated with this project will be disposed of after November 30, 2002. If the samples are determined to be hazardous, additional charges apply for disposal (typically less than \$10/sample). If you would like the samples to be held longer than ACZ's stated policy or to be returned, please contact your Project Manager or Customer Service Representative for further details and associated costs. ACZ retains analytical reports for five years. Please notify your Project Manager if you have other needs.

If you have any questions, please contact your Project Manager or Customer Service Representative.

Sue Banksy

30/Oct/02

Sue Barkey, Project Manager, has reviewed and accepted this report in its entirety.

REPAD.01.11.00.01

L39055: Page 1 of 4



Case Narrative

SEH

October 30, 2002

Project: L39055

#### Sample Receipt

ACZ Laboratories, Inc. (ACZ) received 1 surface water sample from SEH on October 24, 2002. The sample was received in good condition. Upon receipt, the sample custodian removed the sample from the cooler, inspected the contents, and logged the sample into ACZ's computerized Laboratory Information Management System (LIMS). The sample was assigned ACZ LIMS project number L39055. The custodian verified the sample information entered into the computer against the chain of custody (COC) forms and sample bottle labels.

#### **Holding Times**

All analyses were performed within EPA recommended holding times.

#### Sample Analysis

This sample was analyzed for inorganic parameters. The individual methods are referenced on both, the ACZ invoice and the analytical reports.

This report reflects the retest analysis of Dissolved Calcium, Magnesium, Manganese and Zinc for sample L37666-01. The retest results do not verify the original results. There appears to be a dilution factor error in the original analysis. There will be no charge for the re-analysis.

2773 Downhill Drive Steamboat Springs, CO 80487(800) 334-5493

### **Inorganic Analytical** Results

SEH

Project ID:

Sample ID:

DR-4-SW

ACZ ID: L39055-01

Date Sampled:

07/14/02 15:25

Date Received:

10/24/02

Sample Matrix: Surface Water

Metals Analysis

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Calcium, dissolved	M200.7 ICP	97.8		mg/L	0.2	1	10/28/02 23:22	ct
Magnesium, dissolved	M200.7 ICP	11.0		mg/L	0.2	1	10/28/02 23:22	ct
Manganese, dissolved	M200.7 ICP		U	mg/L	0.005	0.03	10/28/02 23:22	ct
Zinc, dissolved	M200.7 ICP	0.03	В	mg/L	0.01	0.05	10/28/02 23:22	ct

Wet Chemistry

Parameter	EPA Method	Result	Qual	Units	MDL	PQL	Date	Analyst
Hardness as CaCO3	SM2340B - Calculation	290		mg/L	1	7	10/29/02 17:03	calc

Note: This report is for the re-analysis of the sample previously reported as ACZ project L37666-01.

2773 Downhill Drive Steamboat Springs, CO 80487 (800) 334-5493

## Inorganic Reference

Report Header	· Explanations	Y 31. Y 32. 7. W 1917						
Batch	A distinct set of samples analyzed at a specific time							
Found	Value of the QC Type of interest							
Limit	Upper limit for RPD, in %.							
Lower	Lower Recovery Limit, in % (except for LCSS, mg/Kg)							
MDL	Method Detection Limit. Same as Minimum Reporting Limit. Allows for instrument and annual fluctuations.							
PCN/SCN	· · · · · · · · · · · · · · · · · · ·							
PQL	Practical Quantitation Limit, typically 5 times the MDL.							
QC	True Value of the Control Sample or the amount added to the Spike							
Rec	Amount of the true value or spike added recovered, in % (except for LCSS, mg/Kg)							
RPD	Amount of the true value or spike added recovered, in % (except for LCSS, mg/kg)  Relative Percent Difference, calculation used for Duplicate QC Types							
Upper	Upper Recovery Limit, in % (except for LCSS, mg/	•						
Sample	Value of the Sample of interest	-5/						
QC Sample Ty			and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s					
AS	Analytical Spike (Post Digestion)	LFM	Laboratory Fortified Matrix					
ASD	Analytical Spike (Post Digestion) Duplicate	LFMD	Laboratory Fortified Matrix Duplicate					
DUP	Sample Duplicate	LRB	Laboratory Reagent Blank					
LCSS	Laboratory Control Sample - Soil	MS/MSD	Matrix Spike/Matrix Spike Duplicate					
LCSW	Laboratory Control Sample - Water	PBS	Prep Blank - Soil					
LFB	Laboratory Fortified Blank	PBW	Prep Blank - Water					
QC Sample Ty	pe Explanations							
Blanks		minimal contamination	n in the prep method procedure.					
Control San	nples Verifies the accuracy of th	e method, including th	e prep procedure.					
Duplicates	Verifies the precision of the		, , ,					
Spikes/Fort								
ACZ Qualifiers		MDL and ROL						
В	Analyte concentration detected at a value between		hold time					
Н	Analysis exceeded method hold time, pH is a field t							
R	Poor spike recovery accepted because the other spike in the set fell within the given limits.							
T	High Relative Percent Difference (RPD) accepted because sample concentrations are less than 10x the MDL.							
U	Analyte was analyzed for but not detected at the indicated MDL							
V 14/	High blank data accepted because sample concentration is 10 times higher than blank concentration							
W	Poor recovery for Silver quality control is accepted because Silver often precipitates with Chloride.							
X 7	Quality control sample is out of control.  Poor spike recovery is accepted because sample concentration is four times greater than spike concentration.							
Z	Poor spike recovery is accepted because sample of	oncerniation is four this	les greater than spike concentration.					
Method Refere	nces							
(1)	EPA 600/4-83-020. Methods for Chemical Analysis	of Water and Wastes	, March 1983.					
(2)	EPA 600/R-93-100. Methods for the Determination of Inorganic Substances in Environmental Samples, August 1993.							
(3)	EPA 600/R-94-111. Methods for the Determination of Metals in Environmental Samples - Supplement I, May 1994.							
(5)	EPA SW-846. Test Methods for Evaluating Solid Waste, Third Edition with Update III, December 1996.							
(6)	Standard Methods for the Examination of Water and Wastewater, 19th edition, 1995.							
Commonts								
Comments (1)	OC results calculated from raw data. Results may a	vary slightly if the roun	ded values are used in the calculations					
(1) (2)	QC results calculated from raw data. Results may vary slightly if the rounded values are used in the calculations.  Soil, Sludge, and Plant matrices for Inorganic analyses are reported on a dry weight basis.							
(3)	Animal matrices for Inorganic analyses are reported on an "as received" basis.							
	, with the manager for monganic analyses are reported							
DEDIMOS 11 00			<del></del>					